CA 2E

Building Applications
Release 8.7

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This
Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2014 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

m Online and telephone contact information for technical assistance and customer
services

m Information about user communities and forums
m Product and documentation downloads
m CA Support policies and guidelines

m Other helpful resources appropriate for your product
Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Documentation Changes

The following documentation updates have been made since the last release of this
documentation:

Action Diagram Call Prompt Using an External name

Naming a Function as an Action (see page 436) - Added the description for new
parameters.

Allow SQL Record Level Access
YSQLFMT (see page 54) - Added a model value.
Device User Source Substitution Variables

Substitution Variables (see page 400) - Added a set of new substitution variables for
the device user source.

Model Values Used in Building Functions (see page 41) - Updated model values.

Refresh Action Diagram Statements
YRFSACT (see page 50) - Added a new controlling model value named YRFSACT.
Suppress Display of NLL parameters

Specifying Parameters for an Action Function (see page 438) - Added the
description about toggling F15 to display parameters other than the NLL
parameters.

Trigger Error Processing if no Control Data

Trigger Router (see page 234) - Updated with two new messages information.
Allow RLA Access over DDL Database

m Acronyms (see page 26)

m YDBFGEN (see page 45)

m DSPTRN Device Function (see page 108)

m EDTTRN Device Function (see page 125)

m Generation Mode (see page 245)

m Distributed File I/O Control (see page 249)

Allow SQL/DDL generation without hard-coded schema name

m YSQLCOL (see page 53)

Allow LVLCHK(*YES) for SQL/DDL indexes having RCDOFMT keyword
m YSQLFMT (see page 54)

m YLVLCHK (see page 48)

YSQLFMT override

m YSQLFMT (see page 54)

Meaningful Names for SQL/DDL

m YSQLVNM (see page 55)

Option to Generate RLA against DDL

m YDDLDBA (see page 45)

Protect Trigger loss when moving to DDL/SQL

m CA 2E Trigger Limitations (see page 223)

Corrected Function Structure Charts

m Change Object (see page 654)
m Delete Object (see page 656)
m Display File (Chart 3 of 5) (see page 659)

m Display Record (Chart 1 of 5) (see page 662)

IBM Limitation - File name is valid system name

m YSQLVNM (see page 55)

Meaningful Names for SQL/DDL--Control Table vs Fields
m YSQLVNM (see page 55)

m YDDLDBA (see page 45)

Change the special value from *S to *I

m Naming a Function as an Action (see page 436)

Contents

Chapter 1: An Introduction to Functions 25
(015 -t [o172 1 4[o] s WP PPPTPPPPPTPRE 25
Terms USed iN THiS MOTUIEcouiiiiii ettt ettt ettt ettt e s be e s be e s ba e s bt e e s st e e nateesabeesbbeesabeensteesaeesnneas 26
o] o] 1Y 0 o PO PPPPPTRRPION 26
LY 1 L8PPSR 27
FiY o] o TNV = d T o ST SR 27
(W] o [T e =T o [o 11 V=48 ol U1 g Vot d o) o -SSP 28
FUNCEION TYPES ittt ettt ettt e e st e e e s bt e e s b et e e s na e e e e s b e e e s ab e e e e s sa e e e e s b e e e sesneeesanneeessnranesannne 29
) =1 oL el S0 Vo Vot o 3PS 29
S0 g T oY g TN =i T=Y [L3P 32
Y I T =R U] oot d[o] KPPt 32
BaSiC ProPerties Of FUNCLIONSuviiiiiiiieceitee ettt ettt ettt e e st e e e et e e e eettee e sabeee e staeeeaaseaeesassaaesantseesessaeesnsseaasansseeannns 33
FUNCEION NGMIES ittt ettt e e e sttt e e e e e s et ettt e e e s e st et e eeeesesasabataeeeesesaaabebaaeeesesassssbaaeesesansnnsens 33
FUNCEION COMPONENTS ...ttt ettt e st e s e st e e s e e e e snb e e e e s b e e e s enr e e e s anbeeessabeeesenreeesannneas 33
U T Tot A To] W ©]) 4 Lo o F-3 PR PUPPPPTRROt 33
e 10 L= =T U PP PPPPPPPTTROPOt 33
DA ol LT T = o R PPPTPRE 34
ACTION DIAIAMS 1t iiiiiiiiieeee et ettt et e s e e ettt et e e e s e s abateeeeeessasbaeaaaeeeesassstaaetesssasssssaaaeasssansnssesaeaessensssssssaaeesssnnnnsee 34
Default DeVICE FUNCHION PrOCESSING ..cccccuviiiiiiieeeiiieee ettt e eetee e sttt e e e st e e seaaeeesaaeeeesstaeessnseeesssseaeesnsseeeansseeesnnsneas 34
FUNCEIONS @N0 ACCESS PAtNS...ci ittt ettt e e e s a bt e e s et ee e e saabeeesaabbeeesnbeeesaubteessabeeeennnne 35
PV [o [To] g ¥ | B o o ol Ty | o =SS PURRRt 35
TaTa=T={ g VA @ o 1Yol {1 ¥ =R PURUOt 35
(oo g o oY LT =d g AV O V=T] V- S 36
Referential INtegrity ChECKINGcviii it e e st e e e st e e e s are e e ssnbeeeesnsteeeesseeesnnneeas 36
FIEIA ValidATiON ..eeeeeiiieeiiie ettt ettt e e st e e e a bt e e s e bt e e e sttt e e e s bt e e s sasbaeesabbeaesanbbeeeesbaeesanaeas 36
Y] T =48 Vo Vot o] o - PUUUOt 37
Building BIock APProach, @N OVEIVIEWc..uuiiiiiiiieieiiiieee e e e eeetite et e e e s estttee e e e e s e s abaeseeaesesastaaseaeeeesaassssseeeaessenssnsens 37
Top-Down ApPlication BUIIAING.........eeiiiiiie ittt e e e et e st e e e st e e e s nte e e snsaeeesnsreeeenseeesnnnnnas 38
Chapter 2: Setting Default Options for Your Functions 41
Model Values Used in BUIldiNG FUNCLIONSoiiiiiiiiiiiiiieieenite ettt ettt ettt sttt saae b e e saeeenaeas 41
User INterface Manager (UIM)coo ittt e et e s e eee e s tae e e e st e e seasee e e snsteeeenstaeesanseeeesnsseeeannseeennnnnns 56
WINAOW BOFUEIS ...ttt ettt ettt ettt e et e s sttt e e sttt e e s abe e e s aabaee e sabbeeessbeeesaasbeeesabbeeeeabaeessasbaeesssaeanns 57
ChanGiNg MOEI VAlUEBS....coiie ettt e e e et e e e e e e e st e e e e e e e seaabataeeeaaeseanssbaseaaeseasnntaasaaaesesansarseaeans 57
FUNCLION LEVEL ..ttt ettt et st s bt et e st e e bt e s be e s bt e s e be e e bt e s beesbee e beeesabeenbbeesnseennees 57
IMOAEI LEVEL ...ttt sttt sttt e st e st et e bt e s bt e e bt e s be e e beesabe e s bt e sabeesbae s bt e e sateensbeenabeenes 58

Contents 7

Changing @ FUNCLION NGMEiiiiiiiiii ettt ettt e b e bt bee s bt e bt e s bt e e bt e s be e e bt e sbeeeneesbeeennenane 58
FUNCEION K@Y DEFAUILS ...ttt ettt ettt s bt e bt e s bt e bt e s bt e e beesbe e e snbeenbeeesaneenees 59

Chapter 3: Defining Functions 61

Navigational TEChNIQUES @Nd AIUS ...c..eiiiiiiiieiiee ettt ettt s b ettt e s bt e beeeb et e saeeesbe e e sabeesneeesaneennees
[D1EY o] E= 1A Y| 20T Yo o o TSRS
Getting to Shipped Files and Fields

Database Functions.........cccecueeveeenieeneenne

Understanding Database Functions
Internal Database Functions and PHY ACCESS Pathscocciiiiiiiiiiiiiic e e 64
FAN - (VA o o Tol Y | o V- ST PUP PRt
DEVICE FUNCLIONSeeeiieieiiet ettt ettt ettt e e e e ettt et e e e s ettt et e e e s e ann s et e teee s e nn b e e e eeeeseaannraaneeeesesannsnaneeeeesannnrnne
Understanding Device Functions

DEfiNiNG DEVICE FUNCLIONS ...coutiieiieitieeiee sttt ettt ettt et e st e et esb et e bt e s bt e bt e s b et e bte e bt e e sate e beeesabeenseeesaneenees
Device FUNCLIONS STANAArd FEAtUIES.......uiiiiciiee et cetee e crtee et e et e e st e e e st e e e saaeeessnbeeeesntseeeesteeesnnseeas 73
Standard FEAtUreS—USEI INTEITACE ...civiiiiieiiierie ettt sttt s e s e e st e e s e e sate e sabeesateesabeesabeesaseesareess 74
Standard Features—ProcessSing TECHNIQUESiiiiciiie ettt ettt e et e e e stte e e s etre e e stbeeeesataeeeeasaeeesnreeaans 74
Device FUNCLION Program IMOESccouiiiiiiiiieiiee ettt ettt ettt et s bt s ae e st e saee s bt e e sbee s bt e e saneesnseesaneenees 75
Classification of Standard FUNCLIONS DY TYPE....uiiiiiiiieeii ettt et 75
{0 =T g U] g ot (o] o TSP PP U OPPTPUPPTPTN 76
Understanding UsSer FUNCLIONSuiiiiiiii ittt e e e e e sttt e e e e e e s e abaar e e e e e e sesastaeseeessesnnsranseeesannns 77
DefiNiNg Fre@-FOrmM FUNCLIONS.ccitiieieiee et ettt e ettt e e ettt e e et e e e e e tae e e stbeeeesataeeeenssaeseansaaeeansbeeeessaeesnnsenas 77
[y 1Y [o T W AT e To [Yo I UV Yot u o 3PS 78
IV S SAEES .. e e s e e e e e e s e e e e e e aea e e e a e e e e e e e aeaeaeeaaeaeaaaaaaaeaaseaeaaaens 78
L8] To [T =T Lo [T Y= Y (oY T YU PRTN 79
BaSiC PrOPErties Of IMIESSAEES .. .eeiiiiiieeeiiie e ettt e e ettt e e eette e e eetaee e s etaeeeestbeeeeetaeeestbaeeaastseeeanssaeeeassasaeantbeeeassaeesansaeas 79
Defining Message Functions
Specifying Message FUNCLIONS DETAIIS.........uiiiiiiieieiii e et e s e et e e e st aeeseaaee e snaeeeesnreeeennnes 80
SPECifying Parameters fOr IMESSAZEScccuuiieiciieeeeiiieeertee sttt e e e stee e esteeeestaeeesssteeessseeeesssaeesasseeesnnseeessnsseeeannes 81
Specifying SECONd-LEVEl MESSAZE TEXLuuuiiiiiiieiiiiiiiee et e e et e e e e e e e sttt e e e e e e e eseabbaaeeeeeeesassasseesaessannsnsnes 81
FUNCEION FIEIAS .ttt ettt et e e ettt e e s et te e e s bt e e e e s bt e e saasbaeesabbeeesaabaeesesbaeesanbeeesnsbaeesnanns
Understanding Function Fields
Basic Properties of Function Fields
[T o g I @eT] o 1= = 4o LS
DLl a1 =3 VT ot [o TN o T=1 o U PUUUOt
Function Types, Message Types, and FUNCLION FIEIAScoiii i e e e e e e e e e eaanees 84

Database Function
CNT Function Field

CRTOBJ Database FUNCLION ...uvveiiieiieiiirieiie e e sttt e e e eesettere e e e e e eseabaaeeeeeeeseababaeeeeeesesssabaeeeeeesesnsstssreeeeeesanssrsaeeeens 88
DFENSCRFMT DEVICE FUNCLION .. .cciiiiiiiie ettt e e e ettt ee e e e e e e aab e eeeeeeeeasbaaaesessessssaanseeeesesssnnnnseesesesrnnnnn 89
DENRPTFMT DEVICE FUNCHION .. .ccieiiiiiieeeeeeeeiiiiee e e eeeetteie e e e e e ettt eeeeeeeeaa b e aeeeseessstaaneeessessssannseesesssssnnnnseesesessnnnnn 92

8 Building Applications

DTN NO] NN F] =] o T = V11 £ o] o IO RN 94

(B 2RV ¥ o Yot o Yo T =i T=Y [PR TTSRR 95
DSPFIL DEVICE FUNCEION ..cceeeieiee ettt ettt ettt e e e e e e e s e s r e e e e e s e smneneeeeesesannnnreneeesesannnnnnee 96
DSPRCD DEVICE FUNCHION ...ciiiiiiiititeiee ettt ettt e ettt e e e s e e e e e e s e s s rer e e e e e s e semnnneeeeeeesesnnnreeeeeesennns 100
DSPRCD2 DEVICE FUNCHION ..ciiiiiiiiiteiee ettt ettt e e ettt e e e s e e e e e e s e s s en e e e e e s e s nnnreeeeeeesesnnreeeeeeesenans 103
DSPRCD3 DEVICE FUNCLION .cciiiiiiiiiitteee ettt ettt e e e ettt et e e e s ettt et e e e s e s anbebteeeeeeseaasnbbeeeeeesesanrsaaeeeesanaan 105
DSPTRN DEVICE FUNCLION ..ceiiiiiiiiiitteee ettt e ettt e e sttt et e e e e et ettt eeesesanbebteeeeeeseaannbbeaeeeesesanseaeeeaesanann 108
EDTFIL DEVICE FUNCEION ...ttt ettt e e e e e e e s e e e e e e e e smnnr e e et e e e sesnnrneeeeeesenans 113
EDTRCD DEVICE FUNCHION ..ceiiiiiiiiiieieee ettt e ettt e e e s e e e e s e s e e e e e e e e e samnnreeeeeeesesnnrrneeeeesenans 117
EDTRCD2 DEVICE FUNCLION .cciiiiiiiiiitteee ettt ettt et e e e sttt et e e e s ettt et e e e s e ss bbb teeeeesssnsssaeaeeessesnnssaaeaeesennan 120
EDTRCD3 DEVICE FUNCLION .cciiiiiiiiiiietiee ettt ettt e e e e e sttt et e e e s e st et et e e e s e s babteeeessssasssaaeeeeesesanssaaeeeesennnn 122
EDTTRN DEVICE FUNCTION ..eiiiiiiiiiiitteee ettt ettt e e e e e sttt e e e e e s st et et e e e s e s baeaeeeeesseassbaaeeeessassnssaaeeeesenann 125
EXCEXTFUN USEE FUNCTION ittt ettt ettt e ettt et e e e s ettt e e e e s e sms b ee e e e e e e e s mnnnaeeeeeeseannnreeeeeeesennnn 130
EXCINTFUN USEI FUNCEION ..ciiiiieteeeiee ettt ettt et e e e sttt e e e e s e s e e e e e e e e s mnenaeeeeeeseannnreeeeeeesennn 135
EXCIMSG MESSAZE FUNCTION.iiiiiiiiieiiiiee ettt se e e et s et e s s et e s e sr et e s ennn e e e sneeeseanreeesnnneas 136
EXCUSRPGIM USEI FUNCEION....cciiiiitiiee ettt ettt ettt e e e e et et e e e s e st aet e e e e e s ssababaeaeeeesessanssaaeeeesennnn 138
EXCUSRSRC USEI FUNCLION iiiiiiiiiiitieee ettt ettt et e e sttt et e e e s st e e e e e e e s e s baeaeeeessseasnsaaeeeeesessnssaaeaeesannnn 139
Overall User SOUICE CONSIABIATIONSuiiivieriieiiiesieeeitee st e et e st e ssteesbe e sbeesabeesbeesabeessseesabeesaseessteesnseesnsaesnseenn 139
MAX Function Field
Function Field..............
MTRCD DEVICE FUNCTION ..etiiiiiiieieiiie ettt ettt et e et st e e st e s et e e s essn e e e s be e e s enre e e sannneeesaneeesennreeesannnees 152
PRTFIL D@VICE FUNCLION ...eiiieiiiietiteeee ettt e ettt et e e e sttt et e e e s e et et e e e e e s esanbee e e eeeeesannnbbeeeeeesaannreeeeeeeaanann 154
PRTOBJ DEVICE FUNCHION...cciiiiiiiitit ittt ettt e e e ettt et e e e s ettt e e e e s e s s b eb e e e e e e e saannbeeeeeeeseannreeeeeeesanann 158
RV N O\ (=T 1= 2=l U] o Lot o] o HE Rt 159
RTVOBJ Database FUNCLION ..c...iiiiiiiiieeiee sttt sttt sttt sttt st st e st e s bt e st e s bt e sabeeebeesabeeesaeesabeesseesane 160
SELRCD DEVICE FUNCHION ..ttt ettt ettt e et s et e e s et e s e mr e e e smnne e e snreeesanreeesannneeesanneeean 161
SNDCMPMSG MESSAZE FUNCLION .cciiiiiiiiiiiiiiieicicieccceceeecececeeee s eeesesesesesenanans 164
SNDERRMSG MESSAZE FUNCLION.....ciiiiiiiiiiiiiiiiiiicicccccceccceeeceeeree s e e e s eseaeeesenanans 165
SNDINFMSG MESSAZE FUNCLION ciiiiiiiiiiiiiiiiicicccccceccccceceeeeeeeeeee e e e e e e e e e e e e e s eeeeeseaesesenanans 167
SNDSTSMSG MESSAZE FUNCLION 1.ieiiiiiiiiiiit ettt ettt et e e s s s ettt e e e e s s e aabaeeeeeesesasbaaaeeeessssnnssnaeeeess 168
SUM FUNCEION FIEI .ttt ettt ettt ettt e st e st e st e st e e sabee s beesabeesabeesaseesabaesaneens 168
USR FUNCLION FIBIA ..ttt et e et st e e e st e e e e s abe e e saabeeeesabaeeesnbeeesnbaeessnbeeesnnnen 169
Default Prototype FUNCLIONSuuiiiiiee ittt e e et e e e e e e st b e e e e e e e e seababaeeeeaeeeenntbaneeaeeennns 169
Chapter 4: ILE Programming 171
Choosing RPGIV as the Default LANGUAEEcceee ittt ettt e e ettt e e e e e e ettt e e e e e e s e e st aaeeaaeeeeensaaaeeaeas 171
ILE FEAtUres That ATfECE CA ...ooeeiiiieetie ittt sttt ettt st e st e st e st e st e e sabeesabeesaaee s baesbeesabaesseesabaeanseesane 172
oY= T (W O =T 4 o] o PP PUPPPN 173
(oY== Yo o - |11 V-SSR 174
(1T oLl LT =g o CT A A Yo TU ol TNt 175
CONLrol (H) SPECITICAIONSueii ettt e e ettt e e e e tae e e ettt e e eeateeeeessaeeeeasseaeeantaeeeassaeeesseaaans 175

Contents 9

COMPITING RPGIV SOUICE......eiiiiiitieeitee ettt ettt ettt e bt s bt e et e s bt e et e s b e e e bt e s bt e eabeesabeeeabeesabeeeaseesabeesaneess 175

(0] o1 1 To 7o T PSP P PP PPPTRTN 176
(0]] 1Te] o N I T P T TP 176
2y O AV O =T Yo TU | o I PP UPPPPPRPTTPINE 177
MOEI VAlUB YRPASGNcoiiiiiiieeiiiiesteesiite et siteeste e st e sateesabeesabeesabeessbeesabeesabeesabeesabeesabaesabaesabaesnbeesabaesnsaesabaeenseesans 179
RPGIV GENEIATOr NOLES......eeteieiee ettt ettt e ettt e e e e e sttt e e e s e s aaba bt e eeeeesanbebteeeeeesansnbbeeeeaesasnnsaeaeeessasannneen 180
Service Program Design and GENEIratioNcocuiiiiiiiiiiiieiiie ettt sttt ettt st sbe e sir e s sbe e e sar e e san e e saneennees 180
SErVICE Program OVEIVIEW ...ccciiiiiiiiiiiiiiiiiiieieieeeeeteeeeeeeee et et et et et et et et et et et et et eteteteteteteteteeeteseeeretererererererererererererenens 181
SErviCe Program FUNCHIONS.ciiiiiiiiiiiiiiicicicceeeeeeeeeeeeee et e et et e e e e et e e et e e e e et et et eeetereeeeeeeseseresererererererenererenerens 182
o T ST Tord o o I D L] =11 3 - 1= PP 184
Adding MOdUIES aNd PrOCEAUIESeoiuieiiiieiiteeeiie ettt ettt ettt st sbe e st sat e e sabe e bt e e s it e e bt e e saseesnseesaneennnes 185
The YBNDDIR MOGEI VAIUE.....oveeieeieeteeeeee ettt e e et et e e e e e et a e e e e e e eeseabaaaeeeeeesenntsaeaeaeseenanssaeaeaeeeannes 189
Ry o T=Tot V2 LYl V1 N USRS 189
Specifying a Value Other Than FNONEooii it et e et e e s rte e e e sta e e eestteeesabaeeesataeeeennsaeesnnsaens 190
Chapter 5: Web Service Creation 191
F Y oY Yo - [of F USRSt 191
INSTAllAtioN REQUINEMENTS . ..eiiieieiiiieeiie ettt sttt et e st e et e st e st e skt e s bt e sabe e e st e s beeesbeesabeeeseesnbaeanneenane 192
REQUITEA IBIMI PTES ...ttt ettt ettt e e sa e st e st e st e s abe e s bt e sabeeeabeesabeeeaeesabeeenseesabeeenneesabeesneenane 192
PCML N IMOTUIE ..ttt ettt et e e sttt e s et e e e sbb e e e e aa bt e e s abbeeesabeeeeeasbeeesnbbeessabeeeeannbaeesnaneeas 193
ATCRITECTUIE ettt ettt e ettt e st e e s a bt e e e e bt e e e s abteeesa b e e e e aaabeeesanateeeanbeeeeesbaeesaabaeesaabaeesnnnee 196
WED SEIVICES LIMITAtIONS ...eeiiiiiiiieiiiieeetet ettt sttt e e ettt e sttt e e s sttt e e eabbeeesabteeesabbeeeenbeeesanseeessnbeeeennnee 199
Y= Laa] o1 1IN = To 17 SR 200
COMIM@NTAS .ttt ettt ettt ettt et e st e e bt e s abe e s bt e sabeeeabeesateeeaseesabeesaseesabeeeaseesabeeeaseesabeeenseesabeeeaseesabeesaseesabaesaneess 207
YCRTWS (Create Web Service INSTANCE)....cccuuii ittt ettt e et ette e e e e tte e e e eata e e e e abaaeeenbbeeeentaeeennnaeas 208
YUNSWS (UNINSEAll WED SEIVICE) ...veeiieiiieieiiie ettt ettt ettt e e et e e e et e e e s tae e e e e abaeeeeataeeeabaaeesnbbeeeentaeesnnsaens 210
Web Service REMOte DEPIOYMENToeiiii e e et e e e e e e st e e e e e e sessastaeaeeeaeesesnsssaaneesssenssssens 211
R I EINCES ..ttt ettt e e s a e st e e s a bt e e a bt e sa bt e e bt e sa b e e et e sa ke e e bt e s be e e bt e s be e e bee e ba e e bt e e baeenneenane 215
Chapter 6: IBM i Database Trigger Support 217
IMPIEMENTING TIIZEEIS .oeiiiiiieeicieee et e et e e e e et e e e ettt e e seaaeeeesbaeeeasteeesasseeeesssseesansseeesanssaeesnseeesanssaeesansnneesnnsenenns 218
Typical Trigger IMPIEemMENTAtIONccueiii e e e e e et e e s e ee e e s e e e e s teeeessnteeessnseeeesnseeesannes 219
(07 A S W aT= =Y [o o] =T g T=T o =Y [o P UURR 220
(O N o N gt f (T T4 o[-1 (o] T TR 223
(07N SV ToTo L= B U o o Yo o R 223
Performing AdminiStrative TASKSccccuiiiiiciiie et e et e e e e e e s te e e st ae e e ente e e ssnseeeesnnreeeennsaeesnnnnnas 223
Creating TriGEEI FUNCTIONSvviiiiiii ettt e e e sttt e e e e sttt e e e e s s et e e et e e s sessaabeaeeeessasasbaeeteeesesnssneneesesssnnssrnneeeens 224
o [g Yo WaTo =0T O WY ot o] o PSR USURN 226
o [Lo Yo Wt oY G oY T o =T <] PSSR USURN 228
USING TN COMIMANUS ...vviiiiiiieeeiiieeeeireeestteeeeseteeessstaeeestaeeeasteeesansseeasssseesasssseesasseseesnsseeeanssssessnsseessnsseeeannes 228
Model t0 RUN-TIME CONVEISION ..o..viiriieriiienieesteeeteesiteesteesibeesuteesabeessseesabeesseesabeesseesabaesseesabaeeseesseesnseesssasenseesnne 234

10 Building Applications

R UL T g T=I] U] o] o Lo o O PSP PO OPPPR PPN 234

LI =4 (= T 2(e 1 UL 1= P PP PP PO PPRP PRI 234
LT =d LT T=T V=T PP P USROS 235
Trigger RUNTIME EXTErNaliZatioNn.........ciiiiiii ittt e e et e e e tae e e st e e e et teeeseanteeesnsaeeeassreeeannes 235
Chapter 7: Modifying Function Options 237
Understanding FUNCLION OPLiONSciiiiiieieiiie e cciees st eeste e e ee e e s re e e et e e e seaeaeeessseeeesstaeeeanssaeesssseeesnsseaeassaeessnsees 237
SPECITYING FUNCLION OPTIONS ... ittt ettt et e bt e st e bt e saee e sbe e e sbbeesbe e e sabeesnteesaseesnneesaneennees 237
ChOOSING YOUT OPETIONS ... tiiiiieititette ettt ettt ettt et sttt e st e et e st e st e st e e eabeesabeeeabeesabeeeaneesabeesaseesabaesaneesn 238
Identifying Standard FUNCLION OPLIONScoouiiiiiiiiieiiie ettt sttt sttt st be e s e e bt e st e ebeesbeeenneenane 238
(DY] ok I @ o = o T TSRS 238
(61T | (ST PPPR PP 238
CRANEE < ettt ettt ettt ekt e e bt ettt e bt e s bt e e bt e sa bt e e beesa bt e e bt e sa b e e ebee s beeeareesbeeenee s 239
D11 SRS 239
DiISPIAY FRATUIES ..ttt ettt s bt e et e st e st esa bt e e bt e sa b e e eabeesabe e s bt e sabeeeabee s beeenee e beeenneenate 239
(0o o111 o o T USRS 239
INTLIAL CONTIFM VAIUE oottt st e s be e s be e e be e st e e ebeesnbaeenbeesabeeenseesnbaesseesnss 240
Standard Header/FOOTEr SEIECTIONccveiiiee ettt e et e et e et eete e ebeeeateeseteeenresereeenreean 240
[f ACLION Bar, WAt TYPE? ..eeiiiiiiiieiiieeiee sttt sttt sttt st e et e s e e bt e st e e e bt e sabeesabeesabeeeseesabeeenneesabeeeneenane 240
U] 1 ST =1 =Tt S PSPPSR 240
0] o) {11 =g Yo M 0] o] (=T g V=T 0} = 1 A o o VO USSR 241
DI Ta oY ol e oY ={ = 0 4 TN 1Y/ (o o [T SR USURN 241
EXGT ATEEE A oottt sttt st e et s bt e e bt e s bt e e bt e s bt e e be e s b e e e bee s beeennee e beeenneenare 241
=T o= Lol o 011 o] « L P PP PP PP PTPPPPPPPPPPPPPNt 241
23V o I (A A ol £=T=T I PP PPPPRt 242
POST CONTITM PaSS.ciuuiiiitiiiiieeitieete e st e st e st e st e s bt e sabeesabeessbeesabeeeabeesabeessbeesabaeesbeesabeeenseesabeeensaesabessnseesbaesnseesnse 242
SENA All IMESSAZES OPTiON ...iiiiiiieee ettt e e e e e e e e e e ettt e e e e e e eesaataareeeesesaastsaseeeeeesanssssseesesesanssssens 242
EXIT CONMEIOL ettt sttt st e st e st e et e s bt e e abeesa bt e s abeesab e e s bt e sabeeeabeesabeeesneesabeesseenane 243
RECIQIM RESOUITES ..ottt ettt s e et sa e st e st e e bt e s bt e s abeesabeeeabeesabeeenseesabeeenseesabeeenneesabeesnneenane 243
(@ To T =Te [o 1V a T oY = =1 o s WU UURR 243
COPY BACK IMIESSAZES .eeeiieeiiiiiiiiee e e e ettt e e e e e eectt e e e e e e e s ettaeeeeeeseaaataaeeaaeseaastaaseaasseasastbaseeseeesaasbaaaeeaseesanssraaneaens 244
COMMIEMENT CONTION ..ottt ettt et s e st e st e s bt e sabeesabeesabeesabeesabeesaseesabeesaseesabaesaseens 244
{0 1aY -4 @e 00T 010 1= 0 A @] o o | SR 244
EXCEPTION ROUTINE 1ottt et e e e e e s et e et e e e se e bb e e e eeesesasbaeeeaeesesasssssaeaeeessasssnssnneesesennns 245
Generate EXCEPLION ROULINE .ot e e e s e s e s e s e e e e e s e e e e e e e e e s e eeeeeeaeeeseeesaseseanns 245
(T o LT = 1 Te] g WO o] 1 o] o LT T U 245
GENEIALION IMOE ... ittt ettt sttt e et e st e e et e s bt e s bt e sa ke e sabeesabeesaseesabeesaseesabeesaseesabaesaneens 245
(CT=Y g T=T =T < =1 ' PR 246
L L= TNV o= (oYl 1 > SRS 246
GENErAtE @S @ SUDTOULINE «..eeiiiiiee ettt e sttt e e sttt e e s e be e e seabtee e sbbeeesaabaeesaantaeessseaenns 246
SRAIE SUDTOULINE. ... ettt e sttt e e e s bt e s st b e e e s abe e e e sabeeesssbeeesabeeesaabaeesenbaeesnnseens 247

Contents 11

SCIEEN TEXE CONSTANES...iiiiiiiiieiieeieeiiiiie ettt cee e e e e e ettt eeeeeeeeeta b e eeeeeseasssaseeessestasanseesesssrannseesssssnnnneeesesesssnnns 247

N (Tol UL {[o] o Mo or=) { o] o PRSP PO UOPPTPPPPPRN 247

OVerrides if SUDMITEEA JOD....cooiiiiie ettt e st s be e s be e s be e sabeesbaesabee s 247

= 01V T o] a1 g =T o | PSP P PR PUPTPN 248

WoOrkstation IMpPIEMENTAtIONc.uiiiiiiiie et e e e e e e st e e e e ata e e e abaeeesntreeeenraeesnnnnens 248

DiStriDULEA FIle 1/0 CONTIOl.ccuviieriiireeeee ettt et et et e et e et eeete e e ebeeeeaeeebeeebeeebeeeseeenbesenseeeseeensesenteeenseeents 249

NUIT UPAAte SUPPIESSIONeiitiieiiieiiiee ettt ettt s e et e st e st e st e e bt e sabe e e bt e sabe e e bt e sabeeebee s beeenneesbeeeseenane 250
Identifying Standard Header/Footer FUNCLION OPLIONScccviiiiuieiiieeiieeciee et st e eireeeteeeteesveeeereeebeeenseeebaeenseeenns 251

Standard Header/Footer FUNCLION OPLIONSccciiiiieeiiee e ceite e cte ettt steeetre e sreeeareesaaeesareesbeesaseesaseesaseesaseennnes 251

N3 0o [¥ T3 T WY ol <T=Y o TSP 251

ENable Selection PromPt TEXE ...cc.ii ittt ettt sttt et e st e s bt e s b e e bt e st e e sbeesabeeesneesbeeeneenane 252

Allow Right t0 LEft/TOP 10 BOTEOM .. .iiuiieiieieiieieie ettt sttt e e et seesbesaeese e s et ensesaessesneensennensan 252

Function Options for Setting Header/Footer Defaults..........cccvieiiiiiiiiciee ettt e vee e 252

USE AS DefaUlt fOr FUNCHIONS ..o.viiiiiiiiieciet ettt ettt ettt et saa e e st e e bt e e st e e sate e s e beesabeesabeesaseesabaesaneens 253

Is This an Action Bar

Is This a Window

Design and Usage CoNSIAEIAtiONSccocuiiiiiiiiieiieeetee sttt ettt e et e st e et e st e e bt e sabeesabeesabeeesneesbeeenseesane 254
Chapter 8: Modifying Function Parameters 257
Understanding FUNCLION PAramELersuuiiiiiiiiiiiiiieee ettt e e e sttt e e e e e s etate e e e e e e sesaaataeeeeeesessstaeseeessesnnsssaneeessenes 257
IdeNntifying The BaSiC PrOPEITIES ...oeiiuiiieceiiee ettt ettt e ettt e e e et e e e e tte e e eeabaeeesabbeeeeateeeeaasaeeessbeseeastaeseessaeesnsreeaans 257

N T 0 L= U PP PP PP PUPPPTN 257

(UL T Y 1= TSSOSO PRSP 257

o Tl o T - AU LSRR 259

Understanding the Role Of the Parameter...... ..ottt et e e et e e eate e e e abae e e ebbeeeennns 261

Device Design with Restricted Virtual FIEldS........cccuuiiiieiiiicceeee et e e e e e arre e e e e e e eae 267

o o] oI g o= T = 41 (= OO PP PP PUPPPTN 269

Y 8 2 1 0 =1 K= SO PP PP PP PP PP PPPPPTPPPPPPPPPRt 269

AllOWED ParameEter ROIESc..uiiiiieiiieiieett ettt ettt ettt e st e bt e e sa b e e bt e e s abeesat e e sabeesateesaneesaseesaneennes 270
D fiNING FUNCLION ParamEterS. . oo iiiiiiiee ettt e ettt e e e e e st ae e e e e e e e st b b e e e e e eesesbasaeaeaeeeassstaesaeaesenssbanssaessennssrens 271

Defining Parameters with the Edit Function Parameters Panel.........cccuuviviiiiiiiiiiiiee et 271

Defining the Parameter’s Usage and ROIEcoocuiiiiiiiiii ettt e e et e e e eae e e s nre e e e nnta e e ennnneas 280

Defining Parameters While in the Action DIagramccocuieiieciiie et see et e e s e e e e e e s ennneas 283

SpecCifying Parameters fOr MESSAZESccccciiiiiiiieeeiiieeeecee e sree e e st e e e ette e e sstaeeeesstaeesessteeesnseeeessseeeeensaeesnnneens 284

U LY AN N I - L L 01 =T TN 284
Chapter 9: Modifying Device Designs 287
UNderstanding DEVICE DESIZNSuiiiiiiieieiiete ittt st ee e ettt e sttt e e sttt e e s sabeeeseabteeesbbeeesaabteeessbaeesaabaeessabaeessnssaeesaasaeas
Basic Properties of Device Designs

(DTSR = g I 7 1 T F= T o SRS

Presentation Convention for CA 2E DEVICE DESIZNS......ceeeicuieeieiiieeiieee ettt e eeire e e saeeeeseteeeeenseeeesssaeessnsaeesnnnnnas 289

12 Building Applications

DEfaUlt DEVICE DESIEN «..eeueieitieeite ittt sttt st e e st e st e s bt e e bt e s bt e e bt e sabe e e bt e sabe e e bt e sabeeebeesabeeenneesbeeeneenane 290

DeVICe DESIGN FOIMATS. .. ueiiiiiiiieiiiii et s e e e s e e s eaba e e s sb et e e e b e e e sennaees 291
[TV ol D L=Ty = da T o T=Y [LSS 291
FUNCEION PArameTers ettt ettt et e e e s e e e e e s e s e r e e et e e e s mnnreeeeeeeseannneeeeeeesennns 292
PaNEl DESIZN EIEMENTS ..eeieueiiiiiiiiie ettt ettt e ettt e e ettt e e s tte e e e s taeeeesstaeesasaeeeansseeeanssssesassaaeeansaeeeanssaeesansseeesnssenaans 293
PAN@I BOAY FIEIAS ...ttt et sttt s e et e skt e et e st e e e bt e sabeeeabeesabeeeneesbeeeneenane 294
General RUIES FOr PANEl LAYOULccoiiiiiiiiiie ettt ettt e e st e e s te e e sabae e s sabbeeesssbaeessantaeesnseeeens 294
Y= B I o UL A U] o 1 = SRS 295
Y =T N o UL =] [o BT - SRS 295
Default Layout of a Single-Record Panel DESIZNc..eeiiiirieiiiieeieesiee ettt sttt sttt e s saee e 296
Default Layout of a Multiple-Record Panel DESIZNc.c.eeeueeriieriieriieeiee sttt sttt sttt e s b e saee e 297
Default Layout of a Single- and Multiple-Record Panel DeSigN.......ccocueveueeriiierieeniiiieeeeieeeee et 298
National Language Design CONSIAEIAtIONScc.uveeiiiiieeeiieeeciite e e citeeeerre e e eetee e e staeeeeateeeeeasaeeesbaeaeenssaeesesssaeesasseeaans 299
Device Design ConVENtioNs @Nd STYIESciiiiiie ittt e et e e rtre e e st e e e e rate e e eeabaeeesbaeaeestaeesesaaeesnsreeaans 300
(L 1= PSSP 300
WWINAOWS ..eteieiiiieeciiee et eete e sttt e e ettt e e st e e e saaeeeesataeeeessteeesasseaeeansaeeeansseeeeasaeeeeansaeeeansseeesnnseeaesnsseessnnsenesnssnens 301
(010N oY YAV g Vo [1Y SRR 301
FAVot (o] o I = - OO PP PPPPPPRTRPPRE 301
CUA TEXE ACTION BT ittt ettt ettt e e sttt e e e s ettt e e s s e e b et et e e e sesanbbeeeeeesesannbnnneeeeeesannnneneeens 302
CU A BN Y e s s s e s e s e e e s e s e s e s e s e s e s e s e s e s e s e s e sesasasasasasasasasasasasesasasasasasasasasasesasesnsesesesnsnsesnsnss 302
CU A ettt ettt e b et e bt sttt e bt e ettt e bt e e ke e e bt e e ke e e bt sa ke e e bt e ea ke e ea bt e sa b e e eabee e b e e e abee s beeeareesbaeebee s 303
VLT (1S T PN 303
CUA DEViCE DESIZN EXLENSIONS ..cieieieieieieieieieiesese e ee e se e se e e e ee s e s e se s e s s e e s e se s e e e se s e sesesesesesssesesasasasasasasesasesesesesnsenesnns 303
424 010 Lo Ty A =Y G USSP 305
Panel Defaults for RIGHTMOST TEXE ...uiiiiiiiiiiiiie et e e e s tae e e e ate e e searee e e snsbeeeennsaeesnnnneas 305
SEANAAIT HEAA IS/ FOOTRIS c.eeveeeiiteeeeeetee ettt e ettt e e et e e s e et e e e s beeeseaaaeeesesatessassaeesassseessesaeeesssaeesasseessasatesssnsaeesasaees 307
FUNCEION KBY S e s e s s s e s e s e s e s e s e s s e s s e s s s s s sa s sasssassassasasssssssesssasasasesnsesnsns 307
(GRS 0] oY Jo ufl 2UT o ol £ ToT o I 1Q= 1V RPNt 308
FUNCION KEY EXPlan@tions c.cccciiiiiiiiiee ettt et e e e e e st a e e e e e s e st bb e e e e e e e e seasabaaseeaeseanntranaeaesannes 309
Y o=Vl 1 AVA T T=q S VT a Tt o] o TN GRS 310
SUDTIIE SEIBCLOI VAlUEBS ...ttt ettt sttt st e st e st e e sabee s baesabeesabeesabeesabaesaseenn 310
Panel Design EXPlanatory TEXLttt e e ettt e e e e e st r e e e e e e s e eeaabbaseeeeeeseabataeeaeaeseasntaaneaaesennes 311
Positioning of the EXPlanatory TEXE ...ttt e e e e e s r e e e e e e e s abbtaeeeeeeseeantbaneeaeeennns 312
FUNCLION KEY EXPlaNatory TOXE . uuiaiiiieiiieeeeitieeeeiiee e st e e e stee e e e ee e e stteeeesateeessssaeeesssaeeeansteeessnsseeesnsseesannseeesnnnnns 312
Subfile Selector Value EXPlanatory TEXEciiiiiiieiiiieceiee e cte e esee e e e st e e et e e e snae e e snteeeesnsaeeeenneaeesnnneeeans 313
FOrm of the EXPlanatory TEXE.....ccccuii e eciee ettt e e e e te e s ee e e e st e e s eaee e e e sasaeeeesteeeesnnseeesnsraeeannseeesnnnnns 314
(010728 o (VA o] o 1 0 =) TR 315
CUA TEXE FOIMIAT ...ttt ettt ettt e e e e sttt et e e e s e et ettt e e e s e ae b e eeteeeaesanbeeeeeeeee s nnbabeeeaeeesannnnaeeaens 315
Specifying Panel Design EXPlanatory TEXE.. ... i eciee e ciiee e ettt e e eree e sae e e st e e e snaeessnteeessnsaeessnneaeesnneeeans 315
Changing the Number of FUNCLION KEY TEXE LINES ..cccuvveiiiiieeeiiieeeeiiee sttt te e st e e e stae e s e e e snaeeeensneeennnneas 316
Table of Panel Design AtErIDULES........coi it e e e re e e s e e e te e e eenteeesnseeeesnsaeeeannes 316
EdItiNg DEVICE DESISNS . ..eeuiiiiieiee ettt e e e e ee ettt et e e e ee st eeeeeeeeeseabaaaeeaeseaastasasaaeseaastssaeasaaesaassssseasaassanssssaeasaassennsnrens 317

Contents 13

Editing the DeviCe DESIZN LAYOULeiiiiiiiieeiieiieeeite sttt sttt sttt st e bt e st e e bt e st e e bt e sabeeesneesbeesneesane 318

From the Edit Database Relations PAn€l.........cooouiiiiiiiiiiiiiee ettt et e s s snanaeas 318
From the Open FUNCLIONS PANEL........ioi i eiiiie ettt e tee e et e st e e e s ta e e e eata e e sensaeeeenssaeeansaeesnnnneas 318
From the Edit FUNCLION DELails PANEl......iiiiiiiiiiiieieiee sttt sttt sttt st st essae e sbaesbeesaee 318
From the Edit Model ObJECt LiSt PANEIccc.viieeeiie ettt e e e e atr e e e eaare e e st b e e e e ataeeernnneas 318
ChanGING FIEIASeiieieeie ettt sttt e st e e bt e st e e et e e sa b e e eabeesabeeeabeesabeeeaseesabeeeaneens 319
HIdiNG/DroPPINg FIEIAS ...eveieieeieieieie sttt sttt ettt st et ae bt et et et e st e besaeebeeneensensestesbesaeeseeneensenes 323
Setting the SUDile ENA INAICATON......c.iiii et e st e e et e e st e e e streeeentaeeesnnraeesanseeeans 323
Editing Device DesigN FUNCLION KBYS.......uiiiiiiieeeiiee e cciee e e sttt e eete e e stee e estta e e seaeteeestaeeeastaeessnssaeesssseeeanssaeesnnnnens 324
MOdiIfyiNg FIeld LAb@l TEXL ..ccuveiiiieiiieeiee ettt sttt st e et e st e e bt e st e e e bt e sabeeesneesbeeeneenane 325
Changing Display Length of OUtpUt-ONly ENtrES.....ccoouiiriiiiiieiiie et 325
Displaying Device DeSiN FOIMALSccccuiiiiiiiiieiieeeite sttt sttt st e et e st e e b e st e sbeesabeeesneesbeeeseenane 326
Editing DEVICE DESIEN FOIMATLS .. .uuiiiiieiiieiiiiiiiee e e sttt ee e e e s ettt e e e e e e s e st tareeeeesesaassbareeeeeesessssaaeseesssassntsaneeeeeenes 326
Viewing and Editing FOrmat REIATIONScccuiiiiiiiiec ettt s e et e e st e e e s ata e e e e ate e e eabaeeesataeeeentaeeennsaeas 327
AdAING FUNCLION FIEIAS ...ttt ettt sttt e sa e sae e s ab e e bt e e s b e e sat e e saneesnneesaneennees 329
MOdifying FUNCHION FIEIAS ...couuviiieiiee ettt sttt sttt e s bt e e bt e sbe e e saeesbeeeneenane 330
Deleting FUNCHION FIEIASiiiiiieiiectee ettt sttt st e et e s bt e e bt e sab e e e bt e s beeesneesbeeeneesane 330
PV o [T aY - @ o 1) 1 o1 £ ST UPPRPRE 331
(D] = AT Ve 0o o 1 -]] &SSP 331
[V oTe [y YT oY= Aot (o) o I = 7= SRR 331
CUA TexXt Standard ACLION BarsScoiiiiiiuieriieeiee ettt sttt sttt ettt e st e st e sabeesabeesaseesabeesaseesabeesaseesabaesaneens 332
Il ettt et e ettt e s he e e e e aa bt e e e bt e e e e bt eeeeaa bt e e s e b ae e e e baeeeeaabteeeaanbaeeebbeeeeaabaeesnanaeas 332
U7 oot f (o] o RO OO PUT PP PPPPPTN 332
Y] =T o1 o] S OO OO OO P PP TPUPOUPUPTOP 333
=1 o TSP 333
1Y oTe [y Yo Y= TA VAT oo [1YL SRR 334
Modify the defaults to meet your requirements. Modifying Display Attributes and Condition Fields 336
Editing Panel Design PromPt TEXE i iiiiiei ettt e e e e ettt e e e e e s e st b e s e e e e e e s abstaeeeaeeeeenntsanaeaesennes 338
[0 Lot o T T =1 = PPNt 338
SUDTIIE SEIBCTOT TEXE...uiiiutiiitte ettt ettt st e e st e s bt e st e e sabee s beeeabeesabeesaseesabeesaseesabaesaneens 339
Y= (=T o Tl 2o =T OO PO OO PO SPOTUP PP 340
Add SFLFOLD/SFLDROP t0 @ SUDTIlE FUNCLION ...c.eveieiiietiie ettt ettt et st e s st e e s ente e e s naneas 341
ENPTUI for NPT IMPlemeEntationsceiii ittt e e cttte e e e e e sttt e e e e e e s atataeeeeeeseasbaaaeeeeaesenssssessasssennsssens 345
(O1g L a =\ 1= TU 2 -1 PPPR PR 346
Assigning Sequence NUMDEIS fOr ACHIONS........iiciiir et e e s e e e s e e e srae e e e s teeeessreeeennsaeesnnnneas 347
WOTKING WIth CROICESuviiiiiiii ettt e e e s e e e st e e e e st e e e s seeeeesstaeeeasssseeesnseeeeansseeeansaeennnnnens 347
Specifying a Drop-Down SEIeCtioN FIIccoo i e e e e e et e e e e e e s e aaar e e e e e e sennnenes 348
DLl £ [0 LA gV =qo) e o T a o) Al Y/ o LTSS UUSURN 350
Some SPeCifics OF DIrOP-DOWN LiSTSuiiiiiiiiiiiiieeeiiie e eetes st e e et e e e seee e e sa e e e e sate e e e nsaeeesasseeeassaeessnnseeesnnseeenns 351
IVINEIMONICS .eeiitieeeeitie e ettt e ettt e s ettt e sttt e e sa et e s et e e s see e e e sabe e e s ane e e e san s eeeenbe e e s nne e e e sabaeesannteeesnneeeesaneeeeannreeesannnees 351
N TR Te Y I =T o= U - =SSR 351
FAN o d T gV O VT oY g e o T=4 =11 (o o Nt 352

14 Building Applications

Cursor Progression @and SUDTIIES.couii ittt bbbt s e s b e s 352

Setting an Entry Field AtEriDULE.......oo it st 352
ASSIZNING IMUILISLING ENTIY coneeieieiee ettt e e et e e et e e e e et e e e ssaeeeesstaeeeeassaeesnsaeeesnsseeeessaeesnnnnens 353
(81T =4 T T e L1 = T PSSOt 354
o T Y T A | R B 3 [4o] LSRR 355
EdItiNg REPOIT DESIZNSeeieiieiteeiitieet ettt ettt e ettt et e st e et e st e et esa bt e s bt e sab e e e bt e sabeeeabeesabeeeabeesabeeeaneesabaeenneesane 356
Standard REPOrt HEAOEIS/FOOTEIS ...c.iiuiiieieieiete sttt ettt e ettt eat et et e testestesaesbeeneeneentesaebesaesnesneenseneans 356
Understanding PRTFIL @Nd PRTOBIccocuiiiiiiie ettt e st ee e ettt e e sttt e e e sata e e eettae e sntaaeesntaeesanstaeesnsaaessnssessannns 357
o I o OO OO PP PO URRUPPROPPRRPRN 357
o 10 2 PP 357
Modifying REPOIt DESIZN FOMMALSeeeiieiiieeiieiieeeiee st te ettt e ettt e st e st e et e st e e bt e sabeesbeesabeeenneesbeeenseenane 358
Automatic Choice Of REPOIt FOrMATS.....cccuuiiiiiiiiieiieeiit ettt sttt saae e sat e saneesaees 360
Automatic ChoiCe Of REPOIT FIEIAS....c.uviiiieiiie ettt ere e s e e e et e e e e ate e e saba e e e satreeeenraeeennnaeas 361
Dy T YTl aU=T o To o A D LT = o TSP 363
SUPPIESSING FOMMATS .. ittt e e et e e st e e s b et e e e nr e s e s e sbn e e e sne e e e eanraeesannneessnneeeas 363
Modifying SPacing BETWEEN FOIMATSooiiiiiiiiiiieeiee sttt sttt ettt e st e s b e st e e neesbeessneesane 364
SPeCifying Print 0N OVEI IOW......coouiiiiiieieee ettt sttt st ebe e st eeaneesbeeeanee s 365
(0 o= T=dT o T= oo 1=T o1 =Y o o IR RP SN 365
[V oTe [y YT eV [aTo [=T o} =1 4 o o NP RSP 366
Defining the OVerall REPOIt STFUCTUIEcocuiieieier e ettt see e et e s tee e e s tae e e e ate e e eeaaaeeesnbaaeeennsaeesnnneeas 367
Modifying the OVerall REPOIt STFUCLUIEcc.viieieiii e ccieee ettt e et e e e st e e e sta e e e s aaae e e ssaeeeenaseeeennnneas 367
Defining Print Objects Within REPOIt StrUCTUIE.......cccuiii ettt eree e et e e eaae e e e tr e e e e eabae e eeanaeas 368
USING LiNg SEIECHION OPLiONS ..cii ittt et e e e e s et e e e e e e s e aabtbeeeeeesenasstaaseeeeeeennntaaneeaesennns 368
LINKING PriNt FUNCHIONS ...utiiiiiii it sttt e e e e ettt e e e e e e et b b e e e e e e sesasbaasaeaeessennssssaseaessennntraneeaeeannes 369
Zooming into EMbedded Print OBjJECEScccuuiiiiciiee ettt e e ee e e sate e e s aae e e e snbaeeeenseeesnnnneas 370
Using FUNCtion Fields 0N REPOIt DESIN.....uiiiuieeieiiiieeiiieeeriee e ettt e sseeeeestaeeessaeeeessseeeeessseesssnseeessssnesssssseesnnne 372
O o Yo Yl D IT F=d T Y1 0] o (SR USURN 373
Example 1: SIMPIe REPOIT DESIEN ..vviieiiieiiiiieee ettt e e e seette e e e e et tb e e e e e e s e seaabaaeeeeeeeseasstaeeeaeeseasstsaneeeseennes 373
Example 2: EXteNded REPOIt DESIEN ..cccceueiiiiiieie ettt ettt e e e e et e e e e e s e st a e e e e e e e s abstseeeaeeseannstanneeeseennes 379
DEVICE USBI SOUICE.c..utiiiiiiieieeiitee ettt ettt e s e e et e s ettt e s se e e e s s b et e s e s e et e s neee e s aa b et e seanr e e e samsneesaareeesenreeesannneeesaneeeeaan 389
WheEN tO USE DEVICE USEI SOUICTEeieiiiiiiieiiieesiteesiieestteesite e sttt e site e sttt e sateesseeesateessteesaeessseeesssessseeesaseessseesasesnnses 389
UNderstanding DEVICE USEI SOUICE.....ciiiiiiiiiiiiee e e e ettt et e e e eectte e e e e e s eetataeeeeeesesastaeeeeeesessstaaseaeesessstsaneeaesennas 390
ATLACHMENT LEVEIS .ottt sttt e e s bt e e e e bt e e e sttt e e e sabbeeesaabteesabaeeesabbeeesnbaeesansaeas 390
Special Field-Level AttaChMENTcco it e e s e e e e e s nere e e sareeeeesssaeeeennraeesnneeeans 391
Defining @ Device USer SOUICE FUNCLION ..iii.iiii i cciee ettt tee et e e et e e s eeee e e s ete e e s snta e e e snneeeesnsaeeannsaeesnnnnnas 391
Attaching Device User Source to @ DEVICE DESIZN ..cccuviveeeceiiriiiieeeiiieeeeitee e seee e e stee e e s seee e e steee e snreeesneaeeennnneas 393
ENTry-LeVEl DEVICE USEI SOUICE ...uuiiiieiiieiiiiiieee e e e ettt e e e e e ettt e e e e e e e e e btaaseeeesesaasbaaseeeeeeseassssaesaaeeseassstsaneeaesannas 395
Explicitly Attaching Entry-Level DeVIiCe USEI SOUICEuiiiii i ciiiieiiee e eecciittee e e e e eeeirer e e e e e e sesbrsreeeeeeseeantaanaeaeeennns 396
Attaching Device User SOUrce t0 @ FIEldoviiieiieiiiiee et e et e e st re e e e e e e ennneas 396
Working with Inherited Entry-Level AttaChmMENTSooieeiiii i 398
Overriding an Inherited Entry-Level AttaChmMent.........cccuvii i e eaee e 399
SUBSTITULION VATTADIES «...eiieeiee et ettt e e st e e st e e e s e bte e e sbbeeessabaeessantaeesnseeeans 400

Contents 15

Merger Commands fOr DEVICE USEI SOUICEiiiuriiriieitieeieestteeiee st e e tte st e et e st eesaee st e e bt e sbeeesaeesbeessneesane 401

COMMEANT SYNTAX 1.tttiutieeiiieeiee ettt e e et e st e et e st e e e bt e st e e e bt e sab e e eabeesab e e eabeesabeeeabeesabeeenseesabeennseesabaesnneens 402
Alphabetical List 0f Merger COMMaNGS.........uiiiiiieeiiiieeecciee e eee e st e et e e srre e e e s treeessaereeesabaeeesnsreeeensaeesnnnneas 403
DEVICE USEI SOUICE EXAMPIE ...uiiiiiiiiiecciieeesiiee et e st e e e sttt e e e et e e e st e e e e ateeeeeasseeesasseeeanstaeesansseeesnssaeeannsaeesnnnnens 411
Copying Functions That Contain Attached Device USEr SOUICEcoccuieeicieeeeiiiieeecireeesrreeeesvreeesnseeesnneeeens 418
[20] L= g T ol TN e T o PSPPI 418
DOCUMENTING FUNCLIONS ...ttt sttt e s s et e s e e e s easb e e s sne e e e e sareeesnnaeas 419
Guidelines for USINg DEVICE USEI SOUICEeiiiuiieeeiiieeieireeesttee e ettt e sstaeeessseeeesstaesessseeessssesesssssessssssssesssseeeans 419
UNAErStanding EXEENTS ..cciuuiiiiiiiie et e ettt e sttt et e e et e e e s te e e e eate e e ssateeeesataeeeasssaeesssaseesnsseeeassseessssaeesssseeennns 420
ViISURIZING EXEENES ...eiineiieiteeite ettt ettt a e st e e e bt e sa b e e bt e e sab e e bt e e s abe e bt e e sabe e bt e e saneeneeesaneennes 422
Examples of ‘Painting” FUNCLIONSeiiiiiiiiieiieiteeete sttt ettt sttt sttt st e et e sabeeesneesbeeeneenane 423
(00T Y (=T 0l Ao o4 =1 Y £ PSPPSR 424
Device Source EXTENt STAMP (DSES)uuiiiiiiieeeeiiee et ettt e et e e sttt e e e st e e e e att e e e stveeeeataeeeeasaeeesnbsaeeannsaeesnnsanas 427
Examples of Device SOUrCce EXTENT STAMPiiiiiiiii et e et e ctee e et e e e ette e e stree e e ataeeeeasaaeessbaeeennsaeesnnnanas 428
Chapter 10: Modifying Action Diagrams 431
Understanding ACtION DIQBIamSccoiuiieieiiire ettt eritte e ettt s et e e e sttt e e e sabe e e seabeeeesbbeeesaabeeesesbeeesasteessnbaeeeansaeesnaneeas 432
The Edit Database Relations PAn€l........c.uuiiiiiiiiiiiiiee ettt ettt st e e st e e et e e s ate e e snseeeennbeeeennnes 432
The OPEN FUNCLIONS PANEI ..oiiiiiiiiciieeeciee ettt et e ettt e e e st e e e st e e ssaaae e s sabaeeeesbeeesennteeesnsaeeenssseesannes 432
The Edit FUNCLION DELAIlS PAN@l........eiiiiiiiiieii ettt sttt e e et e e st e e sabee e s sabeeeenanee 433
The Display All FUNCEIONS PANEl.........ooiiiiiiiiii ettt sttt sttt e e st e e st e e sabeeeesabeeeenanes 433
Specifying an Action in @an ACtiON DIGZIAamccccuieiieeriierieenite st este e st esreesreesteeesbeessseesseessseesaseessseessseessnes 433
Fie [o [T oY= Yo Yol 4 [o T T PP PP PP PPPTPRP 434
Specifying @ FUNCLION @S @N ACTION ..ottt ettt st e st e st esabeesabeesaseesabaesanee s 434
Naming @ FUNCEION @S @N ACTIONttt e e e e e st e e e e e e s er b e e e e e e sannnneeeeeeesennnnneee 436
Specifying Parameters for an ACtion FUNCLIONccccuiiiiiiiii ettt ettt e e sate e eeba e e e etre e e e earaeeeeanaeas 438
USEBI POINTS ..eeieiei ittt ettt ettt et e e ettt e e e e e e s b b et e e e e e e e s s b e et e e e e e e san s bbb e e eeeeesansnb e e eeeeesaannbeeeeeeeseaannbeeeeeeeeanann 440
UNAErstanding CONSIUCTSuuuiiiiieieeeiiiee e ettt e eeite e e st ee e et e e ssaee e e sttt e e esataeeseaseeeesnaeeeesssaeeeasseessnssseeesnsseesansseeennnsenes 441
Y=To (U L=T o AT | SRR 442
(0o ToTe 14 ToT o T- | OO O U PUPPRRUPUPPTPPPON 442
LT LAY ST SO PP PO PP PUPPPTIN 443
(07T oF=Y o1 [TSI o} i 0o 4 1y 4 ¥ ot £ S 444
Understanding BUilt=In FUNCLIONS.uiiiiiiie e cciee st eee et e et e e et e e et e e e snae e e e s taeeeenneaeesnseeeeansaeesassneesnnsees 445
Ao [« T TP PP T PP PPRTP 445
(60T 1410211 SO PP PSP PPPT PRI 446
(60e] 101 01U L (T TSR 447
Defining @ COMPULE EXPIrESSIONvviiiieiieeeiiieeeetiee e estee e e sttt e s eete e e sateeeessteeesessaeeessaeeeastaeesssseeeessseesannseeesnnnnns 448
(00T g Lot | (= o =) A o] o FO PP PPRPTRIPN 450
CONVEIE VAT «..eeieeeeeie et ettt e et e st e s bt e sa b e e sabeesa b e e sabeesabeesabeesabeesabeesabaesaneesn 453
(DN L=l L]] OO PPU PP 455
Selection Parameters for Date Built-In FUNCLIONSuiiiiiiiiiiiieieriiee ettt 458

16 Building Applications

Considerations for Date and TimMe Field TYPES....ccocuiiiiiriieiieriee ettt sttt et enee s 477

Calculation Assumptions and Examples for Date Built-In FUNCLIONS........ccccoiiiiiiiiiiiieniecieeec e 494
Business and EVEryday CaleNdarsoeeiiuiieieiiie e cciiee et eetee e tee e et e s eeae e e s tae e e enta e e s eata e e e s tbaeeentaeeennneas 494
*DATE INCREMENT RUIES @Nd EXAMIPIES....ciiiiiiieeeiiiiectiee ettt eete et e st e e e te e e eeata e e e streeesnteeesnsaaeesnsseeeannns 495
*DURATION RUIES @Nd EXAMPIESvviieceiiee e ciiee ettt ettt e sttt e e et e e s eave e e e s ta e e eettaeesnbaeeesataeeeasssaeesnsneessnsseesannns 498
UNErstanding CONTEXES.covuiiitiiiiieeiee ettt ettt ettt et e ettt e s at e e bt e e s ab e e bt e e s st e e bt e e st e e sabeesabeeeabeesabeesabeesabeesaneess 501
(DN =] o Y o]) =) PP 501
MoVeE from @ FIEIA 10 @ STIUCTUIE ..eouviiiieeiieece et sttt e st esbe e sabe e s saeesbaesbaesane 503
Move from @ SErUCTUIE 10 @ FIBI ..eiuiiiiieeiiieee ettt e st e st e e sbeesabeeesaeesbaesnbeesane 504
DLV Tl 60T) =) 4 £ PSP OPPPUPPPRN 505
[T o] 0o TN D PSP 515
SYSEEIM CONTEXES ...t e e e s s e e e e s e e e e e e e e s e s aaa e e e s 518
Differences in Subfile Processing Between EDTTRN and DSPTRNs Compared to DSPFIL, EDTFIL, and
K] =11 (@ 0 LTSRS PRTPR 530
FUNCEION CONTEXES ...t ettt ettt e e e e sttt et e e e s e e b et e e e e e s esanbee et eeeeesannneseeeeeeesannnraeeeeeesannnn 532
{81 To [T 6 =T o 11T =4 o] g Lo L1 d oY o [P 547
CONAITION TYPES .eeteieitieetie ettt s bttt e st e et e s bt e st e e s bt e e bt e st e e e bt e sabeeeaseesabeeeabeesabeeeaseesabeesnseesabeesnseesabaesaneenn 548
COMPOUNT CONAITIONS ..ttt sttt s e et e st e s bt e st e e e abeesabeeeabeesabeeeaneesabeesaseesabeeenneess 550
Defining ComMPOUN CONTITIONSuiiiiiiiieeiiiee et e ecee e st eeette e e stte e e e stte e e eeabteeestaaeeestaeesassaeeesnssaseannsaeesnnsaeas 551
Understanding Shared SUDFOULINESouiiiiiiiiiieeee e e st e e e e e e s ettt e e e e e e seaabtaeeeeeeseennsssaneeeesannes 552
Externalizing the FUNCLION INTEITACEoiii ettt et e e e tte e e et e e e e eata e e e e baeeeeenbaeeeeanaeas 553
Understanding the Action Diagram EditOr.......cccuuiiiiiiie ittt saee e e e e e e e s aae e e e snbae e s enteeesnnreeas 554
Y=Y (Yot] = o) =Y ¢ SRR 554
Entering and Editing Field CoONAitioNSuiiiieiii et e e e e e e s baar e e e e e e s e aaatbaeeeeeeeenes 554
LN COMIMANTS ..ceiiitiiieeitiee ettt et e ettt e e ettt e s bt e e e sa bt e e s e uaeeeesabbteesaabeeesaabbeeesabbeeeeasbeeesnsbeessabeeeeannbaeesnnneeas 555
Fi¥o [o o= 4T o WA Voru oY o Rt VN 0o g Yo - [o T SR 558
Deleting Constructs—D LiN€@ COMMANGSuviiieiuiireiiiieeesieeeeeiteeesiee e e st e e ssaeeeeseaeeesssteeeesssseeessseesasnseeesnsnees 559
Moving a Construct—M and A LiN€ COMMANGASceeiiuieieiiieeeeieeecieeeesie e e seere e e svaee s esatee e s saeeeessseeeesnseeesnnnneas 559
(B e Lot o] T =1 PPNt 559
USING NOTEPAD ... e e e e e e e e e e e e e eeees 560
NOTEPAD LiNE COMMANGS ..ceuuviieiieiriieenieeiitesteesiteeeteesiteesbeesabeesaseesabeesseesabeessseesabeesseesabaeeseesbeeesseessseesnseesnne 561
NI (NOTEPAD INSEIT) veeuteeeiieeriiieeteesiteesteesittestee sttt esubeesabeesabeesabeesaseesabeesabeesabeesaseesabaeeseesabaeenseesabeeenseesbaesnseesane 561
NA OF NAA (NOTEPAD APPENG) ..uveiiiiiiiieiiieeieesiee et e steesteesbeesseesbeesbeesabeesbeesabeesseesabeesseesbeeesseesbeesnseesane 561
NR OF NRR (NOTEPAD REPIGCE) .. cuetiieeiiieeeetiee ettt ettt ettt e e ettt e e ettt e e e et e e e eaate e e etbeeeeabeeeeeasaaeessbaeeeensaeeennsenas 561
User-Defined *NoOtepad FUNCLIONooiiiie ettt e ettt e et e e e et e e e e tbeeeeetteeaesabaeaeesteeeeeasaeeessseeeannes 562
Rl 0 Yol 1V 1 (=Y A D I=Y: (o4 V2= (=) I 563
Protecting Action Diagram BIOCKScciccuiiiiiiiiee e cetiee et e et e e et e e s eee e e e st e e e eate e e ssnsaeeesnseeeeenssaeesanneneesnnseeenns 564
oY Tt d oY= 1 =] [o ol ST PUSURN 565
USING BOOKMAIKSviiieiieiieciiiiie ettt e ettt e e e e e sttt e e e e e e e setbaaeeeeeeesaasbataeaeaaeseassasaeeaaassaassataessaessennnssraneeaesanes 566
Submitting Jobs Within an ACtioN DIagram........cei it e et e e e e e e sebaee e e e e s eseabaeeeesaeesesbasaeeaaessennsssnns 568
Inserting @ SBMJOB in @an ACtiON DI@Bram...ccccciiiiiiiiiiiiiiiiiieieieieieieeeeeeetererereseeererererereeetesesesesererererererereseseserererens 569
Defining SBMJOB Parameter OVEITIAESvueeiecuiereiiiieeesiteeeetee e steeeesetaeeseasaeeessseeessstseeeannseeessseeeannsaeessnsnes 570

Contents 17

e Vo= T[] = A (o] O AV d e [T 571

DYNAMIC OVEITIOES ...eeieteeiteeiet ettt ettt et s e et e s a bt e et e s bt e e bt e s bt e e bt e sabe e e bt e sabe e e bt e sabeeeaseesabeeenneesabeeeneesane 573
Special SBMJOB CONSIAEIAtIONSceiiiiiieieiiiieciiie e e stteeee e e e et e e e str e e estteeesetaeeeesssaeeeassseessseaeesnsseeeassaeesnnsnens 573
Advantage of SBMJOB OVEr EXECULE IMIESSAZEueeeeiurieeeeiiieeeiitieeeesiteeestteeesstseeeestaeeeesssseeessseeesssesessssasessnsnes 573
Viewing a SUMmMary of @ SEIECLEA BIOCKccouviiiiiiiee et e e e st e e e ere e e saraeeesnsaeeeennes 574
USING ACLION DIGBIram SEIVICESviiiiiiiieiiiiit ettt s e e st e e e e e s ba e e e snbe e e s s b et e s enreeesnraeas 575
Scanning for SPecified Crit@ria OF EFTOISc.c.uiiiiiiiiieieeette ettt ettt ettt e bt e s bt e s bt e s beesareesabeesanee s 576
Calling Functions Within an Action Diagramccccuieiiiiieeeiiiee e et e et e sre e e e ste e e s ssaee e streeessataeeeenseeesnseeeans 578
Additional Action Diagram Editor FACiliti@s........ccccuieeeeiiiii ettt e e e e et e e e e aae e e snrae e e ensaeeeennes 580
EdIting the PArameELErs ..cc..eeo ittt ettt ettt e e bt e s bt e e bt e sab e e e bt e s beeennee s beeeneenane 580
TOGEIING tO DEVICE DBSIENS...c..utiiiiieitiieiee ettt sttt et s e et e st e st e st e e bt e s bt e e bt e sabeesaseesabeeebeesabaeeneesbeeenneenane 581
U] o Y= T 1Y e Yo PP 581
Toggling Display for FUNCLIONS @Nd IMBSSAEEScccuviieeiiieeeeiiieeceiteeestteeeesteeeeetaeeesbreeesestseesessteeessssaeaessseaeanses 582
Starting Edits for MUItiple FUNCLIONSoocuiiiiiiiec ettt et e e et e e e e ate e e eaba e e e sataeeeentaeeennaeas 583
Starting an Edit for ANOThEr FUNCLIONo..eiiiiiiiee ettt sttt s 583
Copying from One Function’s Action Diagram to Another Using NOTEPADccocuterieerieenieenieeeeee e 584
Modifying FUNCLION ParameEters.........eoeiiiiiiieiie ittt sttt sttt ettt e st e st e sbeeesneesbeeeneesane 584
Switching from Action Diagram Directly to Function Device DESIZNcc.eeevvvieeeciiiie e cctiee e e 585
o AT~ @ o 1 [o - T TSP 585
[S a1 Y= IY a4 [T U T ot o o H SRS 585
[G a1 Y- A L@ o Y=T o I LU Vot o o L3S 586
Lo T T Mo Tol =Y I STU T Vot f o] o HO U USURN 586
Interactive Generation or Batch SUBMISSION ..cccouuiiiiiiiiiiieiieecee ettt s 586
Understanding Action Diagram USEr POINTS.........uuiiieiiioiiiiiiieee et e e s sttt e e e e e e se sttt e e e e e s sesaaataeeeeeesesnsssaseesssennes 587
(O E Y oY= J @ oJT=Tot A (0l 5 10) U 587
(O =T 1 (@ o T =Tt (01 @ 2) U 588
DElete ODJECE (DLTOB) . uuuiiiiiiieeeeiieeeeeieeeeete e e e e ette e e e etaeeeestaeeeebasee s abeaeeasbaseeassaseesnssaaeaassseseansssaesnssaseanssaessnnsenas 589
(D1 EY o] A A S LR (D] 24 o 1 ISR PPRR 589
DiSPlay RECOI (DSPRED) ..eiiiuiiieeeiieie ettt e eetteeeeittee e sitteeeesttaeeeeaaeeesaseaeeasteseeassaseeasaaaeassseseansssaesssaseanssasesnnsenas 591
Display Transaction (DSPTRIN)ccueiicuieeiieeiiteeiteesteeeiteesteeeseesteessseesseeaseesssasasseessesesseesssesassesessssesssesssseesseennes 593
BTt FIlE (EDTFIL)uvteuttetteesteesiteeete e sttt e st e st e s et e sabe e s bt e sabeesabeesabeesaseesabeesabeesabaesabeesabeesnseesabeesabeesabeesnseesabaesseesane 595
EQIt RECOIA (EDTRECD) .. cutiiieitiieeeeitee e ettt e eete e e e ettt e e eetaeeeesabeeeeeaaeee e ssaeeeaabaseeasssaasesseaeaansseseansssaeensbaeeannsaseeansenas 598
Edit Transaction (EDTTRIN) .oiiuiiieeiiie e eciie e eete e eeitte e e ettt e e e et e e e eetee e e stbeeeeeabeeeeessaeeeesseeeestseseansssaessbaaaaansaeeeansenas 600
Print File (PRTFIL) — Print ObjJEct (PRTOBI)...ccocutiiieieiieiiteeiee sttt sttt sttt st sba e e beesbe e s saeesbaesneesane 603
Prompt and Validate RECOrd (PMTRCD).......uiieieieeeiiieeeesieeeeetee e stee e et eessaeae e e ssneeeessntaeeesnssesesnnseeeasnsaeesnnnnns 604
IR oAV Z Sl O] o =Tt A (3 1AV @ 1= 3) SRS 606
SElECE RECOINT (SELRCD) ..utiiiiiiieeiitiie e ettt e ettt e e ettt e e e ettt e eetteeeetaaeeesabaeeeesbaeesassasaeanbaeeeeasssseeansasaessseseensaeeennsaens 607
Understanding FUNCLION STrUCTUIE Chartsuuiiiiiiei ittt e et e e e e e e et e e e e e e s e aata e e e e e e sennnbbaseeaasenaes 608
Chapter 11: Copying Functions 609
Creating a New Function from One That EXiSTS.........uuiiiiiiiiiiiiiiies ettt e e et ra e e e e e e e e baaaeeaeas 609

18 Building Applications

(S go 0 g T o [SV g Vot d oY K 2= 0 1] I 610

From @ Template FUNCLION ..cc...iiiiieiieeeee ettt st ettt et e st e e bt e s be e e sneesbeeeneesane 610
FrOM the EXIt PANEl ..ciieieiieiiieeee ettt sttt st st st esbe e st e e s abeesabeesbeesabeesnbeesabeesnaeesabaesseesase 611
CrOSS-TYPE COPYINE ceeeiiiiiiiiiiiiiiiettttetttettetteteteteeeteettetttetetetetetetetetettttreteteteteteteteterttetereteteteterereterereterererererererereserereren 611
WHhat COPYING PIrESEIVES ...ccccueiiieiiiieeeiitieeeeteeesiteeeestteeesetteeesrsaeeaesataeeeassaeesasseseaassaeeeassseessssseessnsseseansseeesnnsses 612
OULPUL/INPUL FIBIOS ¢ttt ettt ettt sttt ettt et e e e st e st s aeeaeene e st e ee st e ebesaeeseeneensensessesbesaesneeneensansans 612
WAt £0 REVISIE..eeiiiiiiiiiiiiie ettt ettt e e et te e e sttt e e s s abe e e e saateeestaeeeesabaeeeansseeesabeeesansaeeesnsaeesnnneens 612
DIBVICE DBSIGN c.eeiiiiiiiiiiiiiiiiiiiitiieeeeeee ettt et ettt tetetetetetetetetetetereteteteteteteteteteteteteterereretererereterererererererererererererererereren 613
ACtion DiIagram USEr POINTS ...ciiiiiiiiiiiiiiiciiiereceeceee et e e e e e e e e e e e e e e e e et et e eeeeseseeeseeesesesesesesesenenens 613
FUNCHION TEIMPIAEES .. ettt et e s bt e et e st e et e st e e s bt esab e e e bt e sabe e e bt e sabeesaseesabeesnseesabaeanneenane 613
Understanding FUNCEION TeMPIATESccouiiiiiiiiieieeit ettt et st esebe e st e sbeesanee s 614
Creating @ TeMPIate FUNCLIONcoo ittt sttt st e st st e s e e sabeesaneesbeesanee s 615
Special Considerations for EDTTRN/DSPTRN Template FUNCLIONS........ccveeveeiieeeie et cre e st 615
Using a Template Function to Create @ NeW FUNCLION........ccuiiiiiiiie ettt et e evae e et e e e eaens 616
Copying Internally-Referenced Template FUNCLIONSc.c.iiiiiiiiiiiiie e s 616
Creating and Naming Referenced FUNCLIONS.coouiiiiiiiii ettt st 617
Assigning Access Paths for Referenced FUNCLIONScoc.eiiiiiiiiiiiiiii e 619
Defaulting Parameters for Referenced FUNCLIONS.......c..uiiiiiiii ittt et e e e 619
DEVICE DEBSIGNS ..eiiiiiiiiiiiiiiiiiiiiiieeeeeeeee ettt ettt et ettt ittt eeteeeteeeta e et e tetetetat et et atetetetetetareteterereeeterereretereeerererererererereeererens 619
Chapter 12: Deleting Functions 621
DL E=Nd o T a T LU a1 4 (o] o KPS PP UPSPPNE 622
Chapter 13: Generating and Compiling 625
Requesting Generation and ComPilationueeiiiiiiiiiiiiie e e e e e e s e e e e e e s e earaa e e e e e e senannnaes 625
The DiSPlay SEIVICES IMBNU..cccuuiiiiiceiieeeiiiee e ettt e eette e e sttt e e e seteeessaeeeesbaeeeasateeesansaeeessseaeanssseesanseeesasseeeensseesnnnes 626
The Edit FUNCEIONS PANE|coiiiiiiieeie ettt st ettt et e s bt e st e s b e e bt e sbaeesbeesbeeeneesane 626
The Exit FUNCtION DEfiNItioN PANEl.....ccccuiiiiiiiiieiiiieiee sttt et sttt sae e st esbe e sbeeesbeesbaeensaeenns 627
The Edit Model ObJECt LiSt PANEIccoiii ettt et e e e e e st e e e e e e s eaabba e e e e e e sesnntbaaeaaeeennes 627
(0700 0] o111 2 T Yo Yot 1Yo) RS 628
Chapter 14: Documenting Functions 629
Printing @ Listing Of YOUTI FUNCHIONScoiiiiiii ettt e e tee e st e e st e e s eaea e e e sntaeeeesntaeesenneeeesnseeeans 629
[Tl [0 Lo = N T AT I SRS 630
COMPAriNG TWO FUNCEIONS.uiiiiiiiiiiiiiiieee ettt e sttt e e e e s s et e e e e e s sesaebeaeeeessesanbaeeeeeesessssanaeeeesssnnsssnneenens 630
Chapter 15: Tailoring for Performance 631
S TUT 1o 1YY= dr Y YAV o o] [or- | A Lo o NP PSPPRPNE 632
Using Display File, NOt IMENU OPLIONS ...ttt ettt e e ettt e e e e e et b e e e e e e sesaetaeseeeesesnntaaneeaesennns 633

Contents 19

Determining PrOgram SiZe.......o i e st a e e s s b bt e s s e e s ra e e e srr e e e 633

OpPtiMIzING Program OBJECES ..c...uiiiieiiiieiieie ettt ettt st e e st e st e e st e e e bt e sabeesareesabeeeanee s 634
FINE TUNINE e e e e e s s s s s s s s s sassssssssssnsssnnnsssnsnsnsnnnsnsnnnnns 635
Y] =Tt [Yedh o o TN ol U g Yo £ oY o T IV PSR SSNt 635
Specifying the Right Level of Relations ChECKINGccc.vviiiiiei et erae e e aae e e eaees 636

ACtioN DiIagram EQItiNG.......eeouiiiiiieiit ettt ettt sa et ae e s b e e he e sareenat e e sareennees 636
(0o ¥ ol 2T o] (U 4T Yo I [T o o [U 636

Using Single ComMpPouNd CONITIONSiiiiuiieiiiiieeciiie e eetee sttt e e et eeste e e e st e e e ettaeesnseeeesstaeeessstaeesnsseeessseseanns 637

Selecting the Proper USEI POINTScccciiieicciiiccieeeecttee e tee e ertee e e st e e e e tta e e saaeeeesataeeeensaeesnseaeesnssesesnsaeesnnsnens 638
Chapter 16: Creating Wrappers to Reuse Business Logic 639
Selecting ACtion DIiagram STatEMENTSuiiiiiiie e ciee e ettt e st e e e e rte e e eebee e e sbeeeeestaeessaaaeeeasbaeeeenseseesassasesanssesennes 640
Selecting FUNCLION NAME @N0 TYPE ...uiiiiiiiiiieitt ettt ettt et e sat e bt e sabeesbe e e s bt e s bt e e sabeesateesaseesnbeesareennees 642
Automatic Parameter INterface GENEIATIONcicuiiiiiiiii et e e e e st e e e s aae e e ssaraeeesbaeeeennes 643

OFIZINAI CONEEXES ...ttt ettt ettt e et e s bt e e bt e st e e e bt e sabeeeabeesabeeenbeesabeeeabeesabeesnseesabaesnneens 644

The NeWIlY Created FUNCLIONooiiiee e ettt ettt e e e stte e e e eta e e e s be e e e e abaeeseasaeeessbaeeenstaeeeesseeesassasaeassseeeanes 645

The NEWIY CrEatEa AITAYcccccuieieeciieeeciieeeecite e e eette e e sttt e e e estteeesetbaeeesbseeeaataeesassaaeesssaseaasssessassaeesassesaeassseeennes 646

The Parameter DEfiNItIONS ..ooo.iei et e e st e e s s aae e s sbe e e e esbaeessnteeesnseeeensseeesnnnes 647

L S e a4 o] o]) (=) USSP 648

THE RECOIT CONETEXL....eeiiiiiiieeiiiet ettt e ettt ettt e ettt e e sttt e s abt e e e sabb e e e s abeeesausaeeesasbeeeeaabbeesaanbeeessbeeessabeeesnnes 649

THE WRK CONEEXE 1o eniitieiiiitee ettt ettt ettt sttt e sttt e e ettt e s bt e e e sabb e e e e abeeesaubaeessabbeeeesbaeesaasbeeesabbeeesnabeeesannes 650

The NEeW ACLION DIGEIam ..ueiiiiiiiciiiieei ettt e et e e e e e s e sttt e e e e e e e s sabaaeeeeeeesesssaseeeeesseassssaaseeessansnnsranseessannes 651
Appendix A: Function Structure Charts 653
(00T Y oY ={<T 0] o [T o1 SR 654
(@1 CT Y I @] oot AR 655
[T =2 I @ o [T ox RS 656
01Ky o] AV ST L= N (® o F= Tt Ao] =) PRSPPI 657
DiSPlay File (CRArt 2 0 5) cuuuiiiiieiee ettt e et e e et e e e et e e e e eabaeeesbaeeeeaabeeaeaassaaesasbeeaeassaseeesaaeesasreaaans 658
1R o] 1A ST L= (@ o F= T 2 =) S 659
1R o] 1A ST L= (@ o F= T 3o =) S 660
1R o] = 1A ST L= (@ o F= T = =) S 661
Display RECOId (CRart 1 0f 5)...uuiiiiiiiiie ettt e et e e et e e e ettt e e e eatae e e sabaeeeeabeeeeaasaaaeeasbeaeeassaeeeesseeesnsrenaans 662
Display RECOId (CRArt 2 0F 5).....uuiiieiciiie ettt e ettt e e e ettt e e et e e e e eatae e e sabbeeeeateeeeaasaaaesasbesaeassaeesesaseesnsreaaans 663
1R o] A SY=Tole] o I (Ol T T e T e) S 663
1R o] A A SY=Tole] o I (Ol T [A Ao) S 664
D1 R o] A SY=Tole] o I (Ol T [o Yoy) S 665
Display Record— 2 Panels (Chart 1 O 7) ...ttt ettt ettt e et e e e e e e e s ta e e e eabae e eeaaeeesnreeaans 666
Display Record — 2 Panels (Chart 2 Of 7) c..uuei oottt ettt e vt e e et e e e e e ta e e e e baeaeeeataeeeeaaaeaesareaaans 667
Display Record — 2 Panels (Chart 3 0f 7) c.uuiii ettt ettt e e st e e et e s e eaea e e e s nta e e e estaeesennaeeesnreeeans 668
Display Record — 2 Panels (Chart 4 Of 7) c.uuei oottt ee ettt setee e st e e st e e e s eaeae e e snbaeeeestaeesennaeeesnreeeans 669

20 Building Applications

Display Record — 2 Panels (Chart 5 0F 7) ...oouiiiiiriii ettt sttt ettt b e b et s it st e saeesbeebeeneeens 670

Display Record — 2 Panels (Chart 6 0F 7) ...co.eoiiirieii ettt sttt ettt sttt sb e bt et s e st it e saeesaeebeeneeaas 671
Display Record — 2 Panels (Chart 7 0f 7) c.uuuei oottt rtee e st e e e st e e e e eaaa e e e s baeeaeataeeeennnaeesnreeaans 671
Display Record — 3 Panels (Chart 1 0f 8) ...uuiiiciiieiiiiie ettt ettt e e tre e s e e e e aee e e s sata e e e sataeeeestaeesennnaeesnreeaans 672
Display Record — 3 Panels (Chart 2 0f 8)uiiiiiie e etes ettt ree e e e e e e ate e s e eaea e e e s baeeeestaeesennnaeesnreeaans 673
Display Record — 3 Panels (Chart 3 0 8) ...cicciiiiieiiie ettt sttt e st e et e s te e e ve e s beeebeeesbeeenseeenbaeenseaenns 674
Display Record — 3 Panels (Chart 4 0F 8)coiiiriiiiiieeeeteee ettt ettt et b e s b e b et st st st e saeesaeebeeneeeas 675
Display Record — 3 Panels (Chart 5 0f 8)uuiiiciiieiiiiie et see ettt rtee e st e e e e aee e e e eata e e e staeeeestaeesennneeesnreeaans 676
Display Record — 3 Panels (Chart 6 0f 8)ciiicuiieiiiiieecciie et cee ettt rtre e e e e e ate e e e eata e e s staeeeestaeesennaaeesnreeaans 677
Display Record — 3 Panels (Chart 7 0F 8) ...cc.eeiieiieiieieeieeteeete ettt sttt et sttt e b et etesatesaeesaeesaeenseenneens 678
Display Record — 3 Panels (Chart 8 0F 8)ccvierieriiiiiiiereeieete ettt sttt ettt e sttt et e st e satesaeesaeesaeeneeenseens 679
Display Transaction (Chart 1 0f B)eecueiieiieiieeeie ettt sttt sae ettt st e st e e sbe e beenbe e bestesaeesaeesaeenseensenns 680
Display Transaction (Chart 2 0F B) ..c..uiiiieciie ettt e e e re e e e tae e e s bb e e e e ata e e seasaeesanbaeaeeastaeseesaseesnsrenaans 681
Display Transaction (Chart 3 0F) ..c.c.uiiiiciiie et e et e e e rtae e e s tb e e e eate e e eeasaeeesabaeeeeassaeeeesaaeesnsreeaans 682
Display Transaction (Chart 4 0F B)cocueiieiieiieie ettt sttt st ettt st e s bt e sbe e beenbeenbesatesaeesaeesaeanseensenns 683
Display Transaction (Chart 5 0f B)cecueiieiierieieeie et ete sttt sttt s e ettt st e s st e sbe e beenbesnbesntesaeesaeesaeenseensenns 684
Display Transaction (Chart 6 0F B)cccueiieiieiieriee ettt sttt sttt et st e st esbe e be e beenbestesaeesaeesaeenseensenns 685
o Tl STl (@ T T o)) TSRS 686
o Tl ST Il (@ T T o) TSRS 687
e T T =N (@ T T A T o] A IR 688
e T T =N (O T T o}) ISR 689
o Tl 1IN (O =T Yo) ISP USRS 690
o Tl 1Tl (O T T Ao A ISP USRS 691
o Tl 1Tl (O T T Ao}) TSR UUTRUPU 692
o T Y=Yolo Yo I (@ o =Y fl N Y =) RO 693
o T Y=Yole Yo I (@ o= Y d Ao Y =) RS 694
o Tl Y=Yole o I (@ o =Y i o Y =) SRS 695
o Tl Y=Yole o I (@ o =Y R Ao Y =) PP UUTRUR 696
o Tl Y=Yole o I (@ o =Y T o} =) RSOSSN 697
Edit Record — 2 Panels (Chart 1 0T 9)ccooueiiiiieee ettt et eeee e e et e et e e e eear e e e eeaaeeeeetaeeeensteeeeeaeeessnnreeeens 698
Edit Record — 2 Panels (Chart 2 0 9) .uuueei ittt ettt e e ee st e e e e e e e abareeeeeeeseabssaeeeeeesensssaeseeeseennsnrnes 699
Edit Record — 2 Panels (Chart 3 0T 9)ci ettt e e e e e et e e e et e e e e e abaeeesbaeaeeeataeeeensaeeesnsreeans 700
Edit Record — 2 Panels (Chart 4 0F 9)cooc ittt ettt e e et e e e et e e e e abe e e eeabbeeesbaeaeesataeseessaeesasreaaans 701
Edit Record — 2 Panels (Chart 5 0T 9) ..uuuiiii ittt e e ettt e e ee sttt e e e e e e s abareeeeeeesesbsraeeeeeesensssaeseeeseennsnrees 702
Edit Record — 2 Panels (Chart 6 0T 9) ..uueiiiiiieiiiieiie ettt ettt ee et e e e e e e s bareeeeeeesesbssaeeeeeesensssaeseeessennsnrnes 703
Edit RecOrd — 2 Panels (Chart 7 0 9) .uuueei i ittt ettt e e e e st e e e e e e s abar e e e e eeseabsraeeeeeesensssaereeeseennnnrees 704
Edit Record — 2 Panels (Chart 8 0F 9)cccc ittt ettt e e e e e et e e e e eate e e e e abaeeeebbeaeeastaeeeensaaeesnsreaaans 705
Edit Record — 2 Panels (Chart 9 0F 9)oo ittt e ettt e et e e e et e e e e eate e e e e abaeeeebaeaeeestaeesensseeeesreeaans 706
Edit Record — 3 Panels (Chart 1 OF 10)cccieiiiirieiieeeeeiiirieeeee e eecettre e e e e eesetareeeeeeeseabaseeeeeeesesssseeeeeeesenssssaeseeeseenssnrees 707
Edit Record — 3 Panels (Chart 2 0 10)cccieiiiiieiieeeeeiiirieeeee e ee ettt e e e eesetar e e e e eeseabareeeeeeesesssseeeeeeesenssssseseeessenssnrees 708
Edit Record — 3 Panels (Chart 3 0F 10) . ..cccuuiii ettt e e e e eee e e s e e e et e e e seaeaeeesnsaeaeessaeesennnneesnnseeeans 709
Edit Record — 3 Panels (Chart 4 0f 10)ccuiii oottt e ettt e e e e ettt eeeeate e e eeaaeeeebaeaeeestaeeeeasaeeensreeans 710

Contents 21

Edit Record — 3 Panels (Chart 5 0f 10)uiccieiiiieiieeiiieeieeeieeeiee st e et este e e teesbeesbeessbeeebeesstaeenseesnsaeenseesssanansennnes 711

Edit Record — 3 Panels (Chart 6 0f 10)ccccuiiiiieiieeiiie e cieeetee st e et e st e ete e steesteesbeeebeesateeebeesnsaeenseesssasanseennes 712
Edit Record — 3 Panels (Chart 7 0F 10)cccuuiii i ectee ettt e e e s etre e e st e e e e ate e e seasaeeesataeaeenstaeesennnaeesnsreeaans 713
Edit Record — 3 Panels (Chart 8 0F 10)cccuiiiiciiee et eeree sttt e e e e e s ee e e e s tr e e e sate e e ssasaeeesntaeeeestaeeeenseeeesnnrenaans 714
Edit Record — 3 Panels (Chart 9 0f 10)cccuiiiiiiee et ee st e e et e e s eere e e st e e e s ate e e ssaeaaeesntaeaeestaeesenneeeesnnsenaans 715
Edit Record — 3 Panels (Chart 10 Of 10).....cccceeiciieeiieeiiieeiieecieeeieesieeesteesteesteesabeesseessbeeeseesssesensessnsesensessnsasassennnns 716
Edit Transaction (Chart 1 0F 8) ...cciuiiciiiiiieeiie ettt s e et st e e te e st e e e beessbeeesbeessbaeenseeensaeeseesnsaeanseennes 717
o T N Y Y=ot a Lo T Y (@1 ¥ T A o - S 718
Edit Transaction (Chart 3 0F 8)uiiiiiiiii ittt e e et e e e et e e st ae e e s taeeeestaeeesasaaeeensbeeeanstaeesansaeeesnsreeaans 719
Edit Transaction (Chart 4 0F 8)uiicuieiiie ettt et e s e e e s te e e be e st e e ebeesabaeeseestaeenseeensaeaseessaeanseennes 720
Edit Transaction (Chart 5 0f 8) ...ccciiicciiiiiieciie ettt ettt e e ae e s be e e te e st e e sbeesabaeeseesbaeenseeesaeaseesnsasanseennns 721
Edit Transaction (Chart 6 0F 8)c.uiiciiiiiie ettt st e e st e e te e st e e s beesabeeeseesabaeeseeesaeeseesnsaeanseesnes 722
Edit Transaction (Chart 7 0F 8)uieiiciiii ittt ettt e et e e et e e e s tta e e e s abb e e e eataeesaasaaeeesbeeeestaeeeassneesnsreeaans 723
Edit Transaction (Chart 8 OF 8)ciiciiiiiciiie ettt e et e e e e tre e e s eata e e e st ba e e e eataeeseasaaeestbeaeenstaeeeasaseesnsreeaans 724
Prompt and Validate Record (Chart 1 Of 2)couiiccieiiie ettt sttt e et e s te e et e sateeeveeentaeeveeebaeensneenes 725
Prompt and Validate Record (Chart 2 0f 2)ccuii oottt e st e e e s e e e ve e enteeeveeebaeensneenes 726
o 1 L= (@ T T A o = ISRt 727
ATl T (=R (@ o F= T o] =) USSP 728
Tl (=R (@ o F= T i I =) ISR 729
T LR (O o =T o =) RO 730
T A LR (O =T d Yo | =) TR 731
AT O oY [=Totf (g =T A Ao =) IS SO 732
Print OBJECT (Chart 2 0F 5) .uuiiiiiiiiee ettt e ettt e e ettt e e e ettt e e e ette e e e eabaeaesabbeeeastaeeeaasaaaesasbeseenssaeseanssaeesnsrenaans 733
Print OBJECT (Chart 3 0T 5) c.uuiiiiiiiieeiciiee ettt e ettt e e et e e e e te e e e e tte e e seabaeeesabaeeeestaeeeanssaaessbeaeenstaeseassaeesnsreeaans 734
Print ODJECE (CRart 4 0 5) couuieeieeiiee ettt et e s e et e e s te e e bee s baeebeesabeesabeesataeenseesasaeenseeensaeenseesnsaeanseennns 735
Print ODJECT (CRart 5 0 5) couuiieiieiiieeitie ettt e et e s te e e ae e st e e e aee st baeeabeesabeesaseesasaeenseesssaeenseeensaeanseeensaeanseennns 736
L g TN Yl @] o 1=t S PP PUPPPNE 737
Y=ot 2 =T oo) o I (@ o =T Ao i SR URU USRSt 738
SeleCt RECOIA (CRArt 2 O 4) .ottt ettt e e e et e e e et e e e e aba e e e eabaeeeeateeesasaaeaeesbseseessaeesassanaeansaeaeannes 739
Y=Y LYot fa (=Yele o I (Ol T e T e) RS 740
SElECt RECOIA (CRAIT 4 OF 4) coveeiiiecirieeie ettt eee et e e e e e s e et e e et e e e e e s sabaaseeeeeesassbssaeseeessaasssaeseeeesennsnrees 741

Appendix B: How to Create a Deployable Web Service Using a

Multiple-instance Array 743
DEIINE TNE FIlES. . iiiiieiiie ettt e et e s ettt e e e s bt e e e s b bt e e s abteessabbeeesabeeesaabaeessabbeeeenabaeeseasbeeesanbeeanas 745
DEfiNg the Order DETailS AITaYcccccueiiiiiee ettt e ettt e e e e e e st e e e e e eesetbateeeaeeesesbasaeaeeeesaassssaesaaeesanssssaesseessennssrens 747
Create an EXCEXTFUN to Retrieve the Order Header and Order DetailS........cccevveerieeriieniieenieeeiee e 748
REtriEVE the Order HEAUENiiiiiiiieeeiee sttt ettt st st s e st esabe e s beesabeeebeesbeesnaeesbaesnseesane 750
VO T L gLt = T I Gl N - 1Y) PR 752
CRT Order DETAIl (FAITAYS) ..uveieeiiiie ettt ettt e ettt e ettt e e e ettt e e e e tbe e e eetaeeeeeabeeeeesteeeeessaeeeeasseaeeantaeeeassaeesasseeaans 753
Load Order Detail Array (Order detail)........cc.eeeeeceiiiiiie ettt ettt e et e et e e e e tr e e e e atee e eeanaeas 754

22 Building Applications

EEF RTV Order (Order detail]) ...cccueiiiee ettt st et e st e s e s te e e tee st eesbeesateeeaeessteeenseeenseaenseesseeanseennes 757

Set the EXCEXTFUN £0 @ MOTUIEiiiiiiie ettt ettt s tee e st e e s s ate e e saaee e s sabaeeesstaeesssaeessnbaeesnnnes 762
Generate and ComMpPile the IMOAUIE..........ii it e e et e e e e ae e e st e e e e satae e s nsseeesnsseeeestaeessnneeas 763
(O =l BN VAol o o F = - o H P PTPPPPPPPPTPRE 764
Add the Module to the SEIVICE PrOZIamMi.......cc.uiiiiiiieecciee e ceeee st ee et e e e rtee e e st e e e ette e e saaeeeesataeeeensseeesnsaeesansseeennnes 765
Generate and Compile the SErvICe ProGramc.coiiiiiiiiiiiieiiieeite ettt ettt sttt sttt sb e e bt e st esbeesbeesanee s 766
Create @ WED SEIrVICE FUNCLION ..io.iiiiieiei ettt ettt ettt et e e sttt e e st e e e s bae e e sabbeeesaabaeeseasteeesnbaeessnnsaeesnnneeas 767
Deploy the WED SEIVICE INSTANCE........uiiiciii e ccieee ettt et e e st e e e e re e e s eatae e e s taeeeesteeeesasaeaesnsseeeanssaeessnsseeesnsreeaans 768
FIMIOVE ARRAY (FALL) c1vteeuteeeteeeteeeitteetee st e sttt sttesteessttesbeessateesbeeesbtessseeesaseesaeesaseeseeesabeesseeesabeensseesateessseesnsaesaseens 769
Index 771

Contents 23

Chapter 1: An Introduction to Functions

Ordanization

This chapter provides an overview to Building Applications. Its purpose is to help you
understand the CA 2E (formerly known as CA 2E) concepts for using functions in your
model. This guide provides you with instructions on building functions in CA 2E
including:

m Setting system default values
m Defining, copying, documenting, generating and compiling, and deleting functions

m Modifying function options, function parameters, device designs, and action
diagrams

m Tailoring functions for performance

Each chapter is designed to provide you with the information you need to perform the
identified task. Review the entire guide or see the chapter relating to the specific task
you want to perform.

This section contains the following topics:

Organization (see page 25)

Terms Used in This Module (see page 26)
Understanding Functions (see page 28)

Function Types (see page 29)

Basic Properties of Functions (see page 33)
Functions and Access Paths (see page 35)
Additional Processing (see page 35)

Building Block Approach, an Overview (see page 37)

This chapter provides you with a high-level overview of the CA 2E concepts for building
functions. The remaining chapters contain conceptual material and instructions on the
specific tasks required to complete each step of the process.

Where necessary, these chapters also reference other topics and chapters in this guide
or other guides containing related material.

Chapter 1: An Introduction to Functions 25

Terms Used in This Module

Terms Used in

Acronyms

We recommend that before you build your functions, you read or review the material in
the following CA 2E guides:

® Overview
® |mplementation

m Defining a Data Model

Building Access Paths

m Generating and Implementing Applications

This Module

Descriptions of the acronyms, values, and abbreviations used in this guide are defined
here and again the first time they are appearing in text. Thereafter, only the acronym,
value, or abbreviation is used.

The following acronyms appear in this guide:

Acronym Meaning

CBL COBOL

CL Control Language

CSG Client Server Generator

DDL Data Definition Library

DDS Data Description Specifications

DRDA Distributed Relational Database Architecture
ESF External Source Format

HLL High Level Language

IBM International Business Machines Corporation
NPT Non-Programmable Terminal

(N Operating System

RPG Report Program Generator

SAA Systems Application Architecture

sQL Structured Query Language

UM User Interface Manager

26 Building Applications

Terms Used in This Module

Values

Abbreviations

The following values appear in this guide:

Value Meaning

CPT Capture File

PHY Physical Access Path
QRY Query Access Path

REF Reference File

RSQ Resequence Access Path
RTV Retrieval Access Path
SPN Span Access Path

STR Structure File

UPD Update Access Path

The following abbreviations appear in this guide:

Abbreviation

Meaning

CHGOBJ Change object
CNT Count

CRTOBIJ Create Object
DLTOBJ Delete Object
DRV Derived

DSPFIL Display File
DSPRCD Display Record
DSPRCD2 Display Record 2
DSPRCD3 Display Record 3
DSPTRN Display Transaction
EDTFIL Edit File

EDTRCD Edit Record
EDTRCD2 Edit Record 2

Chapter 1: An Introduction to Functions 27

Understanding Functions

Abbreviation Meaning

EDTRCD3 Edit Record 3

EDTTRN Edit Transaction
EXCEXTFUN Execute External Function
EXCINTFUN Execute Internal Function
EXCMSG Execute Message
EXCUSRPGM Execute User Program
EXCUSRSRC Execute User Source

MAX Maximum

MIN Minimum

PMTRCD Prompt Record

PRTFIL Print File

PRTOBJ Print Object

RTVMSG Retrieve Message
RTVOB) Retrieve Object

SELRCD Select Record
SNDCMPMSG Send Completion Message
SNDERRMSG Send Error Message
SNDINFMSG Send Information Message
SNDSTSMSG Send Status Message
SUM Sum

USR User

Understanding Functions

A function defines a process that operates on files and fields in your database. CA 2E
allows you to link functions together to create larger processes that become the
building blocks of your application. You can link functions together as components to
define an application system. You can implement several separate functions as a single
HLL program. There are two ways to implement a function:

m External—the function is implemented as a separate HLL program

m [nternal— the function is implemented as source code within the calling function

28 Building Applications

Function Types

Function Types

There are a number of different function types that fall into the following four classes:
m Standard functions

m Built-In functions

®m Function fields

m Message functions

Standard Functions

Database Functions

Standard functions specify entire programs or subroutines. User-defined processing can
be specified to take place at appropriate points within all standard functions. Standard
functions are intended to provide ready-made building blocks that, when put together,
make up your application system. The standard functions are divided into the categories
described below.

Database functions specify basic routines for updating the database. There are four
different database functions, each defining a subroutine to either create, change,
delete, or retrieve data. Database functions are implemented as part of an external
standard function. All database functions are internal functions. Once you define a
database function you can use it in many different functions.

The database functions are:

m Create Object (CRTOBI)

m Change Object (CHGOBJ)

m Delete Object (DLTOBIJ)

m Retrieve Object (RTVOBIJ)

For more information on database functions, see the chapter Defining Functions (see
page 61).

Chapter 1: An Introduction to Functions 29

Function Types

Device Functions

User Functions

Device functions specify interactive programs of a number of types and report
programs. These programs consist of either a panel design or report design and an
action diagram. Device functions are external functions with the exception of Print
Object (PRTOBJ), which is an internal function. You implement device functions as
programs that operate over databases. The device functions are:

m Display Record (DSPRCD)

m Display Record 2 panels (DSPRCD2)
m Display Record 3 panels (DSPRCD3)
m Prompt Record (PMTRCD)

m Edit Record (EDTRCD)

m Edit Record 2 panels (EDTRCD2)

m Edit Record 3 panels (EDTRCD3)

m Display File (DSPFIL)

= Edit File (EDTFIL)

m Select Record (SELRCD)

m Display Transaction (DSPTRN)

m Edit Transaction (EDTTRN)

® Print File (PRTFIL)

®m Print Object (PRTOBJ)

For more information on device functions, see the chapter Defining Functions (see
page 61).

User functions specify additional building blocks of user-written processing. User
functions provide a means of incorporating user programs and subroutines into CA 2E
generated applications. Their processing steps can be specified with action diagrams or
user-written HLL. They can be implemented as inline code (internal functions) or calls to
separate programs (external functions). The user functions are:

m Execute Internal Function (EXCINTFUN)
m Execute External Function (EXCEXTFUN)
m Execute User Program (EXCUSRPGM)

m Execute User Source (EXCUSRSRC)

For more information on user functions, see the chapter Defining Functions (see
page 61).

30 Building Applications

Function Types

Built-In Functions

Built-in functions execute common low-level functions such as arithmetic operations,
character string manipulations, and control operations such as commitment control and
program exit. Built-in functions are specified within action diagrams and are
implemented as inline source code within calling functions.

The following table consists the list of built-in functions:

Function Meaning

*ADD Add

*COMMIT Commit
*COMPUTE Compute
*CONCAT Concatenation
*CVTVAR Convert Variable

*DATE DETAILS

Date Details

*DATE INCREMENT

Date Increment

*DIV

Divide

*DIV WITH REMAINDER

Divide with Remainder

*DURATION

Date Duration

*ELAPSED TIME

Elapsed Time

*EXIT PROGRAM Exit Program
*MODULO Modulo

*MOVE Move

*MOVE ALL Move All

*MOVE ARRAY Move array subfield
*MULT Multiply

*QuIT Quit

*ROLLBACK Rollback

*RTVCND Retrieve Condition
*RTVFLDINF Retrieve Field Information
*SET CURSOR Set Cursor

*SUB Subtract
*SUBSTRING Substring

Chapter 1: An Introduction to Functions 31

Function Types

Function Fields

Function Meaning
*TIME DETAILS Time Details
*TIME INCREMENT Time Increment

For more information on built-in functions see the chapter Modifying Action Diagrams
(see page 431).

A function field is a field whose value is not physically stored in the database, but is
derived from other fields or files. Function fields are always associated with only one
result parameter, the derived field itself, along with a variable number of input
parameters that are used to derive the calculation.

CA 2E also provides a number of ready-made function fields such as summing or
counting that you can call from within a function. Once the function field is defined, CA
2E automatically incorporates its associated processing logic when it is used. The
function fields are:

m Sum (SUM)

® Maximum (MAX)
® Minimum (MIN)
m Count (CNT)

m Derived (DRV)

m User (USR)

For more information on function fields refer to the chapter Defining Functions (see
page 61).

Message Functions

Message functions define messages that you want to appear at a workstation using
special CA 2E facilities, or they define other variables for use by the function. Message
functions are specified in a similar way to other function types, but are implemented
using i OS message descriptions and are sent by a call to a standard CL subroutine. Their
implementation as i OS message descriptions allows them to be changed for translation
to another national language without affecting the calling program. They can make
direct references to fields in your data model. You can also use Message functions to
execute i OS command requests. The message functions are:

m Send Error Message (SNDERRMSG)
m Send Information Message (SNDINFMSG)

32 Building Applications

Basic Properties of Functions

m Send Complete Message (SNDCMPMSG)
m Send Status Message (SNDSTSMSG)

m Retrieve Message (RTVMSG)

m Execute Message (EXCMSG)

For more information on message functions refer to the chapter Defining Functions (see
page 61).

Basic Properties of Functions

Function Names

CA 2E functions have the following properties.

The name of each function can contain up to 25 characters including any embedded
blanks, and must be unique within a given file.

Function Components

Function Options

Parameters

Functions generally consist of the following components: function options, parameters,
device designs, and action diagrams.

Function options enable you to customize the features of your functions including
database changes, display features, exit control, commitment control, exception
routines, generation options, and environment options.

For more information on function options, refer to the chapter Modifying Function
Options (see page 237).

Parameters specify which field values will be passed into the function at execution and
which fields will be returned from the function on completion. In addition, parameters
are used to define local variables for the function.

For more information on parameters, see the chapter Modifying Function Parameters
(see page 257).

Chapter 1: An Introduction to Functions 33

Basic Properties of Functions

Device Designs

Action Diagrams

Device designs specify the visual presentation of the two types of devices used by
functions:

m Panel (display)
m Report

For more information on device designs, see the chapter Modifying Device Designs (see
page 287).

Action diagrams specify the processing steps for the program function logic. This is a
combination of default (CA 2E supplied) logic and optional user-defined processing logic.

The following table shows which component applies to each function type:

Function Class Parameters Device Action Function
Design Diagrams Options
Device Functions Y Y Y Y
Database Functions Y N N Y,N
User Functions Y N Y,N (1) Y,N (3)
Messages Y N N N
Function Fields Y N Y, N (2) N
Built-in Functions Y N N N

1. \EXCINTFUN and EXCEXTFUN have action diagrams. EXCUSRSRC and EXCUSRPGM
do not have action diagrams.

2. Only DRV function fields have action diagrams; all other function fields do not.

3. EXCUSRSRC is the only user function that has no function option.

For more information on action diagrams, see the chapter Modifying Action Diagrams
(see page 431).

Default Device Function Processing

A default device function generates and compiles into a working program with a default
device design and a default action diagram. Additional logic is required only to achieve
the specific functionality required for the application. User points are provided in the
default action diagram where the logic can be inserted. You can also make changes to
the default device design, parameters, and function options.

34 Building Applications

Functions and Access Paths

In addition to the working program, default device design, and action diagram, CA 2E
provides default processing such as file-to-file validation, database checking, and
prompt logic.

For more information:

m On the action diagram editor, see the chapter Modifying Action Diagrams (see
page 431).

m On editing the device design, see the chapter Modifying Device Designs (see
page 287).

m On standard functions, see the chapters Defining Functions (see page 61) and
Modifying Function Options (see page 237).

Functions and Access Paths

Functions that operate on a file are always attached to the file by an access path.
Records are automatically read from the file using the access path, which specifies the
order and selection criteria in which records from the file are processed. Since the
access path can be based on several files, a function can process data from more than
one file. In addition, a generated program can be composed of several functions, each
processing different access paths. Default panel and report formats are derived from
the function’s access path.

For more information:

m Function types, see the chapter Defining Functions (see page 61).

m Access paths, see the Building Access Paths Guide.

Additional Processing

CA 2E automatically supplies additional processing logic when building functions in your
model including integrity checking, validating data entered in the fields, and linking
functions.

Integrity Checking

CA 2E automatically includes logic to perform domain and referential integrity checking
in the default processing of the interactive function types.

Chapter 1: An Introduction to Functions 35

Additional Processing

Domain Integrity Checking

Domain integrity checking ensures that when a field is used in place of another field,
these fields are similar. This is enforced by ensuring that the fields share the same
reference fields. Fields that have the same domain have the same set of allowed values
for conditions.

When assigning parameters to a function within the action diagram editor, CA 2E
verifies that the field you are passing and the field that is specified as the input
parameter have the same domain. Fields of the same type and length do not necessarily
have the same domain. Domains can be shared by fields through referencing (REF). If
the domains do not match, you receive a warning message. To ignore the warning, press
Enter.

Referential Integrity Checking

Field Validation

This check ensures that the relations specified in the model are satisfied. For example, if
you specify the relation Order Refers to Customer, the HLL source code generated to
implement a maintenance function on the Order file includes a read to the Customer file
to check that a record for the specified Customer Code exists. You can adjust the actual
referential integrity checking that is performed in any given function.

For more information on relations, refer to the the chapter "Understanding Your Data
Model" in the Defining a Data Model guide.

Validation attributes specify how data entered into the field is to be validated.
Validation includes both the attributes supported by i OS, such as uppercase lowercase
checking, modulus checking, i OS valid name checking, and validation through a check
condition. You can define additional field validation logic for any field type and
automatically incorporate it in any function using the field.

For more information about field type, see Defining a Data Model, Using Fields topic in
the chapter "Understanding Your Data Model."

36 Building Applications

Building Block Approach, an Overview

Linking Functions

CA 2E automatically links certain functions together. For external update functions, CA
2E automatically links to the database functions that update data. CA 2E also
automatically provides the linkage to functions that allow lookup capabilities. You can
use action diagrams to specify further links between functions.

For more information on action diagrams, refer to the chapter Modifying Actions
Diagrams (see page 431).

When HLL code is generated to implement several connected internal functions, such as
functions that are implemented as inline code, the HLL used to generate the functions is
determined by the source type of the external function, which calls the internal function
or functions.

If you connect Execute User Source (EXCUSRSRC) functions together with other
functions, you must ensure that the connected functions all have the same HLL
implementation types (that they are all RPG or all COBOL functions.)

Although CA 2E does not impose any limitation on the recursive linking of external
functions, some high-level languages do. For example, the same RPG program may not
appear twice in a job's invocation stack. This means that you should avoid having a
function calling itself, either directly or via another function.

Building Block Approach, an Overview

Building an application is a matter of defining or choosing the right functions and
putting them together to meet your requirements. CA 2E functions serve as the
components for applications. When implemented, several functions may work together
as a single HLL program. Functions can also call other functions, based on default
connections or action diagram specifications.

The process of designing your application should include the step of breaking down your
operations into simple building blocks. Each CA 2E function performs a unique, defined
task. Correlating your operations with these functions is called function normalization.
The structure of CA 2E provides the means for normalizing functions and for
constructing more complex functions from the simple building blocks.

Function normalization encourages the use of a single function to perform a single
defined action. More complex functions can then be constructed by linking together
lower level functions. This approach allows for development and testing to be
incremental and reduces the overall development and maintenance effort.

Chapter 1: An Introduction to Functions 37

Building Block Approach, an Overview

For example, to construct a routine to calculate the days between two dates you should
first construct a function to convert a date into one absolute day number. You can then
use this function to convert the from and to dates to an equivalent numeric value. Then
you can use subtraction to yield the difference. This same low level function can also be
used in other functions that add, drop, or subtract days from a date, without the need
to redevelop or repeat logic.

The CA 2E building block approach gives you categories of functions, and each category
has a specific implementation as follows:

Standard device functions—Specify interactive or report programs. These functions
have device designs attached to them. These functions work together with the
database functions to view, add, change, or delete data in your files.

Internal functions—Are implemented as source code within calling functions.

External functions—Are implemented as HLL programs such as batch processing
and device functions.

Built-in functions—Execute common low-level functions and such tasks as
arithmetic operations and commitment control.

Function fields—Specify how to calculate derived fields. A derived field is any field
with a value that is calculated from other fields when accessed in a routine, rather
than physically stored in the database.

User-written functions—Specify user-written processes with either action diagrams
or RPG or COBOL subroutines or programs.

For more information:

About adding functions, see the chapter Defining Functions (see page 61).

About action diagrams, see the chapter Modifying Action Diagrams (see page 431).

Top-Down Application Building

If you are developing a new application, a top-down approach is a good way to design
the functions for your application. This approach, which assumes that your data model
and access paths are defined, includes

Identifying the functions to be called from points in processing

Working top-down to define functions and function parameters as needed

38 Building Applications

Building Block Approach, an Overview

m Specifying top level constructs and the logic flow of user points

m Filling in user point details

For more information about:

m The functions you will select for your application, see the chapter Defining
Functions (see page 61).

m Getting the best performance from your application, see the chapter Tailoring for
Performance (see page 631).

Chapter 1: An Introduction to Functions 39

Chapter 2: Setting Default Options for Your
Functions

This chapter identifies the model values specific to functions and shows you how to
change them, how to change the default names that CA 2E assigns to functions, and
function key defaults.

This section contains the following topics:

Model Values Used in Building Functions (see page 41)
Changing Model Values (see page 57)

Changing a Function Name (see page 58)

Function Key Defaults (see page 59)

Model Values Used in Building Functions

This topic covers the model values used by functions. Function options can affect the
device design and processing defaults. Model values are shipped as defaults for the
Create Model Library (YCRTMDLLIB) command.

Many function options are derived from model values. If you find that you often change
these options at the function level, you may want to review the settings in your model
and change them at the model level.

For more information about:

m Model values you can change at the function level, see the section Changing Model
Values (see page 57).

m Descriptions of each model value, YCHGMDLVAL, see the Command Reference
guide.

Chapter 2: Setting Default Options for Your Functions 41

Model Values Used in Building Functions

YABRNPT

YACTCND

YACTFUN

YACTSYM

The YABRNPT value is only for NPT generation, and enables you to choose between
creations of CA 2E Action Bars or DDS Menu Bars for a given function. The default is DDS
Menu Bars for models created as of r5.0 of COOL:2E. For existing models upgraded to
r5.0, the default is Action Bars.

We recommend that you migrate to DDS Menu Bars over time since DDS Menu Bars
make use of the new i OS ENPTUI features, which allow the menu bars to be coded in
the DDS for the display file. The CA 2E Action Bars require that an external program be
called to process the action bar. As a result, the DDS Menu Bars are faster, have more
functionality, and create more efficient CA 2E functions.

For more information about NPT user interface options, see ENPTUI in the chapter
Modifying Device Designs (see page 287).

The Action Diagram Compound Symbols (YACTCND) model value defines the symbols
used in editing and displaying compound condition expressions.

The format for modifying this design option is:

YCHGMDLVAL MDLVAL (YACTCND) VALUE('& AND | OR ~ NOT (()) c c')

For more information about compound conditions, see Entering and Editing Compound
Conditions in the chapter Modifying Action Diagrams (see page 431).

The Action Diagram Compute Symbols (YACTFUN) model value defines the symbols used
in editing compute expressions, which include + - * /\ () x. You are only likely to change
these defaults if you have national language requirements. The binary code values for
these symbols can map to different values, depending on the code page in use. For
example, a forward slash (/) on the US code page would map to a cedilla in a French
National code page.

For more information on compute expressions, see Entering and Editing Compound
Conditions in the the chapter Modifying Action Diagrams (see page 431).

The Action Diagram Structure Symbols (YACTSYM) model value defines the symbols
used in action diagrams. The shipped default is *SAA. The Action Diagram Editor and the
Document Model Functions (YDOCMDLFUN) command use this design option.

42 Building Applications

Maodel Values Used in Building Functions

YACTUPD

YALCVNM

YBNDDIR

YCNFVAL

YCPYMSG

The Action Diagram Update (YACTUPD) model value defines the default value for the
Change/create function option on the Exit Function Definition panel. The shipped
default is *YES. The value *CALC sets the Change/create function option to Y only when
a change to the function’s action diagram or panel design is detected.

The Automatic Name Allocation (YALCVNM) model value indicates whether CA 2E
should automatically allocate DDS and object names. The shipped default is *YES.

For more information on name allocation, see the Implementation Guide.

Specifies a binding directory that can resolve the location of any previously compiled
RPGIV modules. Use this model value while compiling RPGIV programs with the
CRTBNDRPG command.

Note: For more information, see the section The YBNDDIR Model Value in the Chapter
ILE Programming.

The Confirm Value (YCNFVAL) model value determines the initial value for the confirm
prompt. The shipped default is *NO.

For more information on function options, see the chapter Modifying Function Options
(see page 237).

The Copy Back Messages (YCPYMSG) model value specifies whether, at program
termination, outstanding messages on the program message queue are copied to the
message queue of the calling program. The shipped default is *NO.

For more information on function options, see the chapter Modifying Function Options
(see page 237).

Chapter 2: Setting Default Options for Your Functions 43

Model Values Used in Building Functions

YCRTENV

YCUAEXT

YCUAPMT

The Creation Environment (YCRTENV) model value determines the environment in
which you intend to compile source is the iSeries. The shipped default is the iSeries.

For more information about:
m Controlling design, see the Implementation Guide.

m Environments, see the Generating and Implementing Applications guide, in the
chapter "Preparing for Generation and Compilation".

The CUA Device Extension (YCUAEXT) model value determines whether the text on the
right side text is used for device designs. The shipped default is *DEFAULT, which results
in no right text and no padding or dot leaders.

The YCUAEXT value, *C89EXT (for CUA Text), provides CUA design features on top of
those which the model value YSAAFMT provides, such as defaulting and alignment of
right side text, padding or dot leaders to connect fields with field text, and prompt
instruction lines on all device function types.

For more information on field attributes and right side text defaults, see the chapter,
"Modifying Device Designs," Device Design Conventions and Styles.

The CUA Prompt (YCUAPMT) model value controls the CUA prompt (F4). If enabled, this
design option enables end users to request a list display of allowed values by pressing
F4. The value *CALC provides additional F4 functionality by processing the CALC: user
points in the function where F4 is pressed—for example, to provide Retrieve Condition
functionality.

The default value for YCUAPMT is *MDL. This value directs CA 2E to enable the CUA
prompt at the model level if the YSAAFMT model value is *CUATEXT or *CUAENTRY.
For more information about:

m Setting display defaults, see the chapter, "Modifying Device Designs"

m Onthe *CALC value, see the Command Reference, the YCHGMDLVAL command

44 Building Applications

Model Values Used in Building Functions

YCUTOFF

YDATFMT

YDATGEN

YDBFGEN

YDDLDBA

YDFTCTX

The Year Cutoff (YCUTOFF) model value specifies the first of the hundred consecutive
years that can be entered using two digits. It is specified as 19YY, which represents the
hundred years: 19YY to 20YY-1. Values between YY and 99 are assumed to be in the
20th century; namely, 19YY to 1999; values between 00 and YY-1 are assumed to be in
the 21st century; namely 2000 to 20YY-1. The default is 1940. The YCUTOFF value is
retrieved at run time and applies to all date field types: DTE, D8#, and DT#.

The Date Format (YDATFMT) model value works in conjunction with the model value
YDATGEN. If YDATGEN is *VRY. The setting for YDATFMT determines the order of the
date components at run time; for example, MMDDYY or DDMMYY.

The Date Validation Generation (YDATGEN) model value determines the type of date
editing source code CA 2E generates. With YDATGEN set to *VRY, you can change the
date format for an application with the YDATFMT model value. No recompilation of
functions is necessary.

The Database Implementation (YDBFGEN) model value defines the method for database
file generation and implementation: DDS, SQL or DDL.

The Database Access Method (YDDLDBA) model value specifies a method of accessing
the database (RLA or SQL) when a function's Generation Mode option is set to
A(ACPVAL) or M(MDLVAL), which resolves to DDL type.

*RLA
Specifies that the external function generates with RLA access.
*sQL
Specifies that the external function generates with SQL access.
Note: To generate or regenerate a function with RLA code for DDL database, set the

YSQLVNM model value to *DDS or ¥*LNG or *LNT, or *LNF and set the YDDLDBA model
value to *RLA.

The Parameter Default Context (YDFTCTX) model value specifies the default context to
use for a given function call in the action diagram editor when no context is supplied:
LCL or WRK. The shipped default is *WRK.

Chapter 2: Setting Default Options for Your Functions 45

Model Values Used in Building Functions

YDSTFIO

YERRRTN

YEXCENV

YGENCMT

YGENHLP

The Distributed File I/O Control (YDSTFIO) model value, together with model value
YGENRDB, provides DRDA support. The shipped default value is *NONE, indicating that
CA 2E will not generate distributed functionality.

For more information on DRDA, see Generating and Implementing Applications in the
chapter "Distributed Relational Database Architecture."

For RPG-generated functions, the Error Routine (YERRRTN) indicates whether CA 2E will
generate an error handling routine (¥*PSSR) in the program that implements the
function. The shipped default value is *NO.

Note: For EXCUSRPGM functions, this value specifies whether an error-handling routine
should be generated in the calling program to check the value of the *Return code on
return from the EXCUSRPGM (if the EXCUSRPGM does not have the *Return code as a
parameter, this check will not be generated).

The call to a CL program that implements an EXCMSG function uses an i OS program.
The Execution Environment (YEXCENV) model value determines the default
environment, QCMD (i OS), in which Execute Message (EXCMSG) functions execute.

For more information about:

m EXCMSG functions, see Function Types, Message Types, and Function Fields in the
chapter, "Defining Functions"

m QCMD and QCL, see Generating and Implementing Applications— Managing Your
Work Environment in the chapter "Preparing for Generation and Compilation"

The time required to generate a function can be significantly improved if comments are
not required for the generated source code. The YGENCMT model value lets you specify
whether or not comments are placed in the resulting generated source code. You can
specify that all comments (*ALL), 'standard' comments (*STD), only header comments
(*HDR), or no comments (*NO) be generated. The shipped default is *ALL.

The Generate Help Text (YGENHLP) model value allows you to specify whether help text
is generated for a particular function. You can specify generation of the function only
(*NO), help text only (*ONLY), or both the function and help text (*YES). This value can
be overridden at the function level. The shipped default is *YES.

46 Building Applications

Model Values Used in Building Functions

YGENRDB

YHLLGEN

YHLLVNM

YHLPCSR

YLHSFLL

The Generation RDB Name (YGENRDB) model value provides the DRDA support for
specifying a default database. When you execute the CRTSQLxxx command, this
database is used in creation of the SQL package. The default value for YGENRDB is
*NONE, which means that DRDA compilation is not enabled.

For more information about DRDA, see Generating and Implementing Applications in
the chapter "Distributed Relational Database Architecture."

The HLL to Generate (YHLLGEN) model value identifies the default HLL type for new
functions. The HLLGEN parameter on YCRTMDLLIB sets this model value.

Note: To default to the value for model value YSYSHLL, select *SYSHLL for the parameter
HLLGEN.

The HLL Naming Convention (YHLLVNM) model value determines the HLL conventions
for new function names. The HLLVNM parameter on YCRTMDLLIB sets this model value.
The default is *RPGCBL, allocation of names that both RPG and COBOL compilers
support.

For more information about converting HLLs, see Generating and Implementing
Applications—Converting a Model from One HLL to Another, in the chapter "Preparing
for Generation and Compilation."

The Generate Cursor Sensitive Text (YHLPCSR) model value gives you the option of
generating your function with cursor-sensitive help. That is help- specific to the context
(cursor position) from which the end user requests it. The shipped defaultis Y (Yes).

The Leaders for Device Design (YLHSFLL) model value refers to the symbols to usedas
leaders between text and input or output fields on panels. The shipped default value is
*SAA, for SAA default left-hand filler characters. You can change any of these characters
using the YCHGMDLVAL command.

Chapter 2: Setting Default Options for Your Functions 47

Model Values Used in Building Functions

YLVLCHK

YNPTHLP

The Generate IDX with LVLCHK(*YES) (YLVLCHK) model value specifies whether an Index
(SQL or DDL), when generated with the RCDFMT keyword in it, is created with
LVLCHK(*YES). The possible values are *NO and *YES. The shipped default is *NO.

If YLVLCHK is specified as *NO, then existing defaults around LVLCHK are retained when
an SQL or DDL index is generated and created. The existing defaults for the LVLCHK
attribute in the case of SQL and DDL are as follows.

m When a table or view is generated and created, it is generated with LVLCHK(*YES),
irrespective of the existence of the RCDFMT keyword.

m When anindex (SQL or DDL) is generated and created without the RCDFMT
keyword, it is created with LVLCHK(*YES).

m When an index (SQL or DDL) is generated and created with the RCDFMT keyword, it
is created with LVLCHK(*NO).

If YLVLCHK is specified as *YES (in addition to YSQLFMT set as *YES), upon subsequent
generation and creation of an index (SQL or DDL), the index is created with
LVLCHK(*YES).

Note: If YLVLCHK is set to *YES (along with YSQLFMT set to *YES), upon re-generation of
the access path, an additional line "Y* CHGLF LVLCHK(*YES)" is generated into the
header portion. This informs YEXCSQL to create the corresponding index with
LVLCHK(*YES). For any other combination of YLVLCHK and YSQLFMT, there is no change
to the existing processing.

The NPT Help Default Generation Type (YNPTHLP) model value determines the type of
help text to generate for NPT functions. All CA 2E functions are NPT unless the functions
are being generated for a GUI product. The types are UIM or TM. The shipped default
for YNPTHLP is *UIM.

For more information about UIM support, see Objects from UIM Generation in the
chapter "Implementing Your Application."

48 Building Applications

Model Values Used in Building Functions

YNLLUPD

YOBJPFX

YPMTGEN

The Null Update Suppression (YNLLUPD) model value sets the default for whether
CHGOBIJ functions update or release the database record if the record was not changed.
This can be overridden with a matching function option. The shipped default is *NO.

® *NO

CHGOBI functions do not check whether the record has changed before updating
the database. In other words, null update suppression logic is not generated in
CHGOBIJ functions.

= *AFTREAD

CHGOBIJ checks whether the record changed between the After Data Read and Data
Update user points.

m *YES
CHGOBIJ checks whether the record changed both after the Data Read and after the
Data Update’ user points.

For more information about:

m CHGOBJ database function, refer to the chapter, "Defining Functions"

m Suppressing null updates, see Understanding Contexts, PGM in the chapter
"Modifying Action Diagrams"

The Member Name Prefix (YOBJPFX) model value specifies the prefix (up to two
characters) CA 2E uses to generate object names. The shipped default is UU. If you
change this prefix, do not use Q, #, and Y because they are reserved characters for CA
2E.

For more information about naming prefixes, see the Implementation Guide.

The Prompt Implementation (YPMTGEN) model value specifies whether the text on your
device designs is generated, implemented, and stored in a message file, making it
available for national language translation. The shipped default value is *OFF. The
parameter PMTGEN on the YCRTMDLLIB command initially sets the YPMTGEN model
value.

For more information about:

m National Language Support, see Generating and Implementing Applications in the
chapter "National Language Support"

® YCRTMDLLIB, see the Command Reference

Chapter 2: Setting Default Options for Your Functions 49

Model Values Used in Building Functions

YPMTMSF

YPUTOVR

YRFSACT

YRP4HSP

The Prompt Message File (YPMTMSF) model value specifies the message file into which
device text message IDs are stored. CA 2E retrieves the messages from this message file
at execution time.

For more information about National Language Support, see Generating and
Implementing Applications in the chapter "National Language Support."

The DDS Put With Override (YPUTOVR) model value is a function generation option. It
enables you to specify use of the DDS PUTOVR keyword in the generated DDS. This
keyword, in effect, reduces the amount of data that needs transmission between the
system and its workstations. Its use can improve performance, particularly on remote
lines.

For more information about system performance, see the IBM i Programming: Data
Description Specifications Reference.

The Refresh Action Diagram on Entry (YRFSACT) model value specifies whether the
YCHKFUNACT processor must be called during Action Diagram load to refresh the Action
Diagram. The possible values are *NO and *YES. The shipped default is *NO.

Note: For more information about what is changed when an Action Diagram is
refreshed, see the details of the YCHKFUNACT command in the Command Reference
Guide.

Used by the RPGIV Generator for the contents of the Control (H) specification for
objects of type *PGM. The allowed values are any RPGIV H-specification keywords, for
example:

= DATEDIT(*YMD) DEBUG(*YES)
m DATFMT(*YMD)

Note: If you need to enter a value that is longer than 80 characters, you should use the
command YEDTDTAARA DTAARA(YRP4HSPRFA)

50 Building Applications

Model Values Used in Building Functions

YRP4HS2

YRP4SGN

YSAAFMT

Used by the RPGIV Generator for the contents of the Control (H) specification for
objects of type *MODULE. The allowed values are any RPGIV H-specification keywords,
for example:

= HDATFMT(*YMD)
= DATEDIT(*YMD) DEBUG(*YES)

Note: If you need to enter a value that is longer than 80 characters, you must use the
command YEDTDTAARA DTAARA(YRP4HS2RFA)

The RPGIV generator includes some source generation options that you can set at a
model level. These options are in the model value YRP4SGN in a data area called
YRP4SGNRFA (RPGIV source generation options). YRP4SGNRFA is a 16-character data
area.

Note: For more information, see the section Model Value YRP4SGN in the Chapter ILE
Programming.

The SAA Format (YSAAFMT) model value controls the design standard for panel layout.
This standard can be CUA. *CUAENTRY is the shipped default.

The DSNSTD parameter on the YCRTMDLLIB command controls the initial YSAAFMT
value. You can override the header or footer for a function from the Edit Function
Options panel. You can also change the value of YSAAFMT using the YCHGMDLVAL
command.

For more information about:

m Using YSAAFMT options, see Device Design Conventions and Styles in the chapter
"Modifying Device Designs"

m YSAAFMT values, see YCHGMDLVAL in the Command Reference

Chapter 2: Setting Default Options for Your Functions 51

Model Values Used in Building Functions

YSFLEND

YSHRSBR

YSNDMSG

The Subfile End (YSFLEND) model value controls whether the + sign or

More. . . is displayed in the lower right location of the subfile to indicate that the subfile
contains more records. This feature is available for all subfile functions. The shipped
default is *PLUS. To change to *TEXT everywhere, change the model value and
regenerate your subfile functions.

The setting of YSFLEND is resolved in the following areas:
m Generated applications

m Device designs

Animated functions

Function documentation (YDOCMDLFUN)

The Share Subroutine (YSHRSBR) model value specifies whether generated source code
for subroutines are shared and whether the subroutine’s interface is internal or
external. This model value and its associated function option are available on the
CHGOBJ, CRTOBJ, DLTOBJ, RTVOBJ, and EXCINTFUN function types.

For new functions, the Send Error Message (YSNDMSG) model value specifies whether
to send an error message for only the first error found or for every error. In either case,
outstanding messages clear when the end user presses Enter. The shipped default value
is *NO, do not send all error messages; send only the first error message.

52 Building Applications

Model Values Used in Building Functions

ysqQLcoL

The Generate SQL Collection/Library Name (YSQLCOL) model value specifies whether a
hard coded SQL Collection/Library name should be generated for tables, indexes and
views. The possible values are *YES and *NO. The shipped default is *YES.

If YSQLCOL is specified as *YES, the SQL Collection/Library specified for the YSQLLIB
model value is generated into the tables, indexes and views, by default, as is the case
now. Subsequently when YEXCSQL is executed to create tables, indexes and views, they
are created into the hard coded SQL Collection/Library. If YSQLCOL is specified as *NO,
the SQL Collection/Library specified for the YSQLLIB model value is not generated into
the tables, indexes and views. However, when YEXCSQL is executed subsequently, the
tables, indexes and views are generated into the SQL Collection/Library specified for the
YSQLLIB model value.

Note: If YSQLCOL is set to *NO and the access paths are generated, another change that
can seen in the source, apart from the absence of hard coded SQL collection/Library
name is, the previously generated Z* line "Z* YEXCSQL NAMING(*SQL)" is now
generated as "Z* YEXCSQL NAMING(*SYS)".

Chapter 2: Setting Default Options for Your Functions 53

Model Values Used in Building Functions

YSQLFMT

YSQLLCK

The Generate SQL RCDFMT clause (YSQLFMT) model value specifies whether the
RCDFMT keyword must be generated for SQL tables, views, and indexes. The possible
values are *NO, and *YES. The shipped default is *NO.

If YSQLFMT is specified as *NO, the record format is the same as the table, index, or
view name (if YSQLVNM (*DDS) is specified) or will be generated by the system (if
YSQLVNM(*SQL) is specified). If YSQLFMT is specified as *YES, the RCDFMT value is
calculated using the same rules as are used when DDS files are generated.

Note: Irrespective of the value of the YSQLFMT model value and if the generation mode
is *DDL, the RCDFMT keyword is generated.

Important!

If YSQLFMT is set to *YES or *NO and a DDL index is generated and created, the
index is created with LVLCHK(*NO).

If YSQLFMT is set to *YES and an SQL index is generated and created, the index is
created with LVLCHK(*NO).

If YSQLFMT is set to *NO and an SQL index is generated and created, the index is
created with LVLCHK(*YES).

If you want to change the LVLCHK attribute of the index to LVLCHK(*YES), the model
value YLVLCHK must be set to *YES, and the corresponding index-related access path
must be regenerated and re-created. Upon regeneration of the access path, an
additional line "Y* CHGLF LVLCHK(*YES)" is generated in the header portion, which
informs YEXCSQL to create the corresponding index with LVLCHK(*YES).

Note: If YSQLFMT is set to *YES, YLVLCHK is set to *YES and RUNSQLSTM is used to
create an index (SQL or DDL), the index would still be created with LVLCHK(*NO). The
current functionality does not cater to the RUNSQLSTM command. Tables and Views
(SQL) and Tables (DDL) are created with LVLCHK(*YES) by default, irrespective of the
YSQLFMT model value. Therefore, YSQLFMT and YLVLCHK model values have no effect
on tables and views regarding the LVLCHK attribute.

The SQL Locking (YSQLLCK) model value specifies whether a row to be updated is locked
at the time it is read or at the time it is updated. The default is *UPD, lock rows at time
of update.

54 Building Applications

Model Values Used in Building Functions

YSQLVNM

The SQL Naming (YSQLVNM) model value specifies whether to use the extended SQL
naming capability. The valid values are:

*DDS

Use DDS names. The shipped default.
*sQL

Use the names of the CA 2E objects in the model.
*LNG

Use the long names of the CA 2E objects in the model along with the DDS or
implementation names.

*LNF

Use the long field names of the CA 2E objects in the model along with the DDS or
implementation names.

*LNT
Use the long table names of the CA 2E objects in the model along with the DDS or
implementation names.

Note:

If a table that has a valid system name (less than or equal to 10 bytes in length), is
generated with YSQLVNM model value set as *LNG or *LNT, and when you set the
Enhance SQL Naming option on the Edit File Details panel to Y and then generate the
source, the table is created with (underscores) "_"s and "TABLE" as suffix, so that the
name of the table becomes more than 10 char long.

Examples:

m CUSTOMER is generated as CUSTOMER_TABLE along with its 2E implementation
name.

m CUST is generated as CUST__TABLE along with its 2E implementation name.
m CisgeneratedasC TABLE along with its 2E implementation name.

m To generate or regenerate a function with RLA code for DDL database, set the
YSQLVNM model value to *DDS or ¥*LNG or *LNT, or *LNF and set the YDDLDBA
model value to *RLA.

Chapter 2: Setting Default Options for Your Functions 55

Model Values Used in Building Functions

YSQLWHR
The SQL Where Clause (YSQLWHR) model value specifies whether to use OR or NOT
logic when generating SQL WHERE clauses. The default is *OR.
For more information about the YSQLLCK and YSQLWHR model values, see the
Implementation Guide.

YWSNGEN

The Workstation Generation (YWSNGEN) model value defines whether interactive CA 2E
functions operate on non-programmable terminals (NPT) or on programmable
workstations (PWS) communicating with an iSeries host. For programmable
workstations, you also specify the PC runtime environment. YWSNGEN can be
overridden by a function option. The possible values are:

= NPT

Generates CA 2E functions for non-programmable terminals (NPT) communicating
with an iSeries host system.

= *GUI

Generates CA 2E functions for non-programmable terminals together with a
Windows executable running in a Windows environment under emulation to the
host.

= *JVA

Generates CA 2E functions for non-programmable terminals together with a
Windows executable running in a Windows environment under emulation to the
host and a Java executable running in a Windows environment using a Web
browser with emulation to the host.

m *VB

Generates CA 2E functions for non-programmable terminals together with a Visual
Basic executable running in a Windows environment under emulation to the host.

User Interface Manager (UIM)

Three model values provide options for UIM help text generation:

m The Bidirectional UIM Help Text (YUIMBID) model value provides national language
support of languages with both left-to-right and right-to-left orientations

m The Default UIM Format (YUIMFMT) model value provides paragraph or line tags

m The UIM Search Index (YUIMIDX) model value provides search for the index name
derived from Values List prefix

56 Building Applications

Changing Model Values

Window Borders

Three model values provide design options for the appearance of the border on
windows:

m The Window Border Attribute (YWBDATR) model value provides shadow or no
shadow

m The Window Border Characters (YWBDCHR) model value provides dot/colon
formation

m The Window Border Color (YWBDCLR) model value provides CUA default (Blue) or

another color

For more information on Modifying Windows, see Editing Device Designs in the chapter
Modifying Device Designs (see page 287).

Chandging Model Values

Function Level

This topic summarizes changing model values for a function of your model.

You can override model value settings that determine function options at the function
level from the Edit Function Options panel. You can reach this panel by zooming into the
function from the Edit Functions panel, then pressing F7 (Options) from the Edit
Function Details panel.

The model values that have corresponding fields on the Edit Function Options panel are:

Values Meaning

YABRNPT Create CA 2E Action Bars or DDS Menu Bars for NPT generation
YCNFVAL Initial value for the confirm prompt

YCPYMSG Copy back messages

YDBFGEN Generation mode

YDSTFIO Distributed file 1/O control

YERRRTN Generate error routine

YGENHLP Generate help text

YNPTHLP Type of help text to be generated

YPMTGEN Screen text implementation

Chapter 2: Setting Default Options for Your Functions 57

Changing a Function Name

Values Meaning

YSNDMSG Send all error msgs (messages)
YSFLEND Subfile end

YWSNGEN Type of workstation

Model Level

For more information about:

m Options applicable to each function see Function Types, Message Types, and
Function Fields in the chapter Defining Functions (see page 61).

m On step-by-step procedures, see Specifying Function Option in the chapter
Modifying Function Options (see page 237).

You can change the setting of a model value for your model by executing the Change
Model Value (YCHGMDLVAL) command. Be sure to use YCHGMDLVAL, rather than the i
0OS command, Change Data Area (CHGDTAARA). Changing model values involves more
than changing data areas; many internal model changes are made by YCHGMDLVAL.

You should always exit from your model entirely when changing model values. Although
the command can appear to run successfully while you are in the model, there is no
guarantee that a full update has taken place.

For more information on using the YCHGMDLVAL command, see the Command
Reference guide.

Chanding a Function Name

To change a function name

1. Select the file. From the Edit Database Relations panel, type F next to the specific
file and press Enter.

The Edit Functions panel appears, listing the functions for that file.

2. Zoom into the function details. Type Z next to the specific function and press Enter.
The Edit Function Details panel appears, showing the function name at the top.

3. Request to change the function name. Press F8 (Change name).
The function whose name you want to change appears underlined on the panel.

4. Change the function name. Type the specific name. If you want, you can change any
other underlined names to better correspond to the new function name . Press
Enter, then F3 to exit.

58 Building Applications

Function Key Defaults

Function Key Defaults

CA 2E assigns the standard function key usage of your design standard. You can specify
additional function keys in action diagrams or modify existing function key default
values.

For more information about function keys, see the chapter Modifying Device Designs
(see page 287).

The following table shows the shipped device design defaults for the iSeries.

Meaning iSeries default
*Help FO1/HELP
Prompt FO4

Reset FO5

*Change mode request FO9

*Change mode to Add FO9

*Change mode to Change FO9

*Delete request F11

*Cancel F12

*Exit Fo3

*Exit request FO3

*Key panel request/*Cancel F12

*|GC support F18

Change RDB F22

*Previous page request FO7/ROLLDOWN
*Next page request FO8/ROLLUP

The default is determined by the design standard selected. The iSeries default is used if
the YSAAFMT model value is set to *CUATEXT or *CUAENTY.

Chapter 2: Setting Default Options for Your Functions 59

Chapter 3: Defining Functions

This chapter is to describe the basic implementation of functions in CA 2E. The following
information describes the various function types and gives a functional overview of
what is involved in the function development process.

Before you define your functions, you should be familiar with the information in the
following CA 2E guides:

m /mplementation

m Defining a Data Model

m Building Access Paths

This section contains the following topics:

Navigational Techniques and Aids (see page 61)

Database Functions (see page 63)

Device Functions (see page 71)

User Functions (see page 76)

Messages (see page 78)

Function Fields (see page 82)

Function Types, Message Types, and Function Fields (see page 84)

Navidational Techniques and Aids

CA 2E provides certain fast path panels that allow you to display the existing functions in
a design model. In this manner, you have access to the functions attached to the design
model files and can perform various operations on all functions in the model from a
single panel. The Display All Functions panel lists the existing functions in a design
model.

Chapter 3: Defining Functions 61

Navigational Techniques and Aids

Display All Functions

You access the list by pressing F17 to get to the Services Menu from which you select
the Display All Functions option. You can use the positioner fields in the top portion of
the display to scan for a particular file name, function name, function type, or
implementation (or generation) name. You can further filter the functions on display by
specifying one application area. Also, you can use any of the various command line
options and function keys to

m Access the function’s action diagrams, device designs, report structures,
parameters, and narrative text

m Display function usage, associated access paths, and locks

m Delete and document functions

The following is an example of the Display All Functions panel.

DISPLAY ALL FUNCTIDNS SYMDL
Application area. : ____ Source library: SYGEN
7 File Function Type GEM name
B custower Change Customer CHGOBJ *N-A
_ Customer Create Customer CRTOBJ *N-A
_. Customer Delete Customer DLTOBJ *N-A
Custoner Display Customers by Nawe DSPFIL UUAKDFR
_ Customer Edit a Customer EDTFIL KDAQEFR
_ Customer Edit Customer EDTFIL UUAJEFR
_ Customer Ok Credit Details EOTRECE KDALELR
_ Customer Sample EDTRCD EDTRCD KDADELR
_ Customer Select Customer SELRCD UUAISRR
_ Customer Work With Custoners DSPFTE UUASDFR
_ Employee Change Emplovee CHGOBJ *N-A
_ Employee Create Emplovee CRTOBJ *N-R
_ Employee Delete Employee DLTOBY *N-A
__ Employee Display Employees by Hame DSPFIL UUAHDFR
_. Employee Edit Employee EDTFIL UUAGEFR +
SEL: Z2-Bt1s, P-Parms, H-Harr., F-fiction diagram, S-Device Design, T=5tructure,
A-Acp, G-J-Gen, E-STRSEU(pgm), L-Locks, DO-Delete, U-Where used, 3-Doc.
F3=Exit FS=Reload

Getting to Shipped Files and Fields

The CA 2E shipped files contain all of the default shipped data such as built-in functions,
arrays, field types, job data, messages, program data, standard headers and footers, and
template functions. The shipped files hold information that you use or reference in the
application during the function building process.

For example, you can change the default values for fields such as return codes or
confirm prompts or you can change the default functions for headers and footers.

62 Building Applications

Database Functions

To access the shipped files and fields

1. Atthe Edit Database Relations panel, type * followed by blanks on the Objects field
(subfile positioner field for objects) and DFN at the relations level to show a list of

files only and not the file relations. Press Enter.

The list of shipped files appears.

B_rIL »Avrays

FIL *Built irn functions
FIL =Configuration Table
FIL »Date List Detail
FIL xDate List Header Detined as
FIL *Distributed File Defined as
FIL. =External Data Rccess API Defined as
FIL »Field attribute tvpes Defined as
FIL *Job data Defined as
FIL *Messages Defined as
FIL *Program data Defined as
FIL *Standard headersfooter ODefined as
FIL *Synon reserved pgm data Defined as
FIL *Template Defined as
FIL Course Defined as

Defined as
Defined as
Defined as
Defined as

Z2in)=Details F=Functions Elnl=Eniries
F3afxit fGeReload Fo=HidesShow FP=Fields

EDIT DATABASE RELATIONS fy Model
= L X Rel lvl: DEH _
? Typ Gbject Relation

Seq T;E Referenced object

Sin)=8elect

FIL *Arrays

FIL *Built in functions

FIL *Configuration Table

FIL =Date List Detail

FIL xDate List Header

FIL *Distributed File

FIL =External Data fccess API
FIL =Field attribute types
FIL *Job data

FIL *Messages

FIL =Program data

FIL =Standard header-footer
FIL *Synon reserved pgm data
FIL xTemplate

FIL Course

Hore. ..
F23=Nore options
F9efiddChange F24=Hare keys

2. Optionally, specify a portion of the particular file’s name.

For example by typing *St and leaving the Rel level field blank the list starts from
the *Standard header/footer shipped file’s relations.

Database Functions

CA 2E provides you with standard functions including the database functions described

below.

Chapter 3: Defining Functions 63

Database Functions

Understanding Database Functions

Database functions provide the means of performing actions on the database. There are
four different database functions each defining a HLL subroutine that creates, changes,
deletes, or retrieves data. Database functions are implemented as part of an external
standard function.

The four database functions are:

m Create Object (CRTOBJ)—Defines a routine to add a record to a file. It includes
processing to check that the record does not already exist before writing to the
database.

= Change Object (CHGOBJ)—Defines a routine to update a record on a file. It includes
processing to check that the record already exists before updating the database
record.

m Delete Object (DLTOBJ)—Defines a routine to delete a record from a database file.
It includes processing to check that the record is still on the file before deleting it.

m Retrieve Object (RTVOBJ)—Defines a routine to retrieve one or more records from
a database file. Processing can be specified for each record read by modifying the
action diagram for the function.

A default version of the Create Change and Delete database functions is defined for all
database files (REF and CPT). You must create the Retrieve Object function if you need
it.

The following table includes the standard database functions.

Function Purpose Access Path
CRTOBI Add a single record UPD, PHY
CHGOBJ Update a single record UPD, PHY
DLTOBIJ Delete a single record UPD,PHY
RTVOBIJ Read a records or record RTV,RSQ,PHY

All the CA 2E database functions have action diagrams that you can use to specify
additional processing before and after the accessing the database .

Internal Database Functions and PHY Access Paths

This section contains the fields, functions, and PHY access paths

64 Building Applications

Database Functions

*Relative record number Field

The *Relative record number field is a 9.0 numeric field with the internal name RRN.
When a program uses a physical file, a relative record number (RRN) field is assigned to
that file. The *Relative record number field can be a key to access a specific record in
that file, regardless of the contents of each field in that record. A different RRN field is
assigned to each physical file that a program uses.

In the CHGOBJ, CRTOBJ, and DLTOBJ internal database functions built over a PHY access
path, the RRN is available in the DB1 context and can be manipulated to retrieve or
update a specific record.

Internal Database Functions

This section describes what happens when the following internal database functions are
created over physical (PHY) access paths: Retrieve object (RTVOBIJ), Change object
(CHGOB!), Delete object (DLTOBJ), and Create object (CRTOB)).

Retrieve object (RTVOB)J)

A RTVOBI created over a PHY access path has one *Relative record number (RRN)
parameter by default:

Parameters Usage Role (default) Default
*Relative record number I RST/POS (POS) Y
Any other fields Any none none

This *Relative record number parameter can be used as a "key" to the physical file
as follows:

RRN as a Restrictor Parameter (I, B, or N) to a PHY RTVOBJ—If the RRN for a
RTVOBI function built over a PHY access path is a Restrictor parameter, only the
record with RRN equal to the parameter value is read.

RRN as a Positioner Parameter (I, B, or N) to a PHY RTVOBJ—If the RRN for a
RTVOBI function built over a PHY access path is a Positioner parameter, only
records with RRN greater than or equal to the parameter value are read.

Chapter 3: Defining Functions 65

Database Functions

RRN as an Output Parameter from a PHY RTVOBJ—If the RRN for a RTVOBJ
function built over a PHY access path is an Output parameter, all records in the
access path are read, starting with record 1. The RRN of the last record read from
the file is passed as the parameter value.

RRN as a Neither Parameter to a PHY RTVOBJ—If the RRN for a RTVOBIJ function
built over a PHY access path is a Neither parameter, the RRN first used to access the
file is the current value of the Neither parameter. The Neither parameter is
accessible from the RTVOBJ in the PAR context. Although the parameter is
initialized to 1 in the RTVOBJ, it can be changed to any numeric value in the User
Exit Point USER: Initialize routine. The value following that User Exit Point is used to
access the file initially.

Deleting the RRN Parameter to a PHY RTVOBJ—If the default RRN parameter is
deleted, two outcomes are possible:

m |f USER: Process data record User Point contains user logic, all records in the
access path starting with record 1 are read.

m [f USER: Process data record User Point does not contain user logic, only record
lisread.

Note: You can add other parameters besides RRN to PHY RTVOBJ functions, but
RRN must be passed first.

The following is a quick reference table for processing the *Relative record number

parameter:
Usage Role Initialized in Record Processing Value Returned
RTVOBJ?

I RST No Single None

I POS No Single or multiple* None

B RST No Single RRN of last record
read

B POS No Single or multiple* RRN of last record
read

N RST Neither PAR Single None

POS Neither PAR Single or multiple* None

0] n/a 1 Single or multiple* RRN of last record
read

Not used n/a 1 Single or multiple* None

m Depends on processing in the USER: Process data record User Exit Point.

66 Building Applications

Database Functions

Change object (CHGOBJ)

In a normal CHGOBJ, the processing includes these steps:

1. USER: Processing before data read.
2. Load key fields to record format.

. Access file to check if record exists.

W

. USER: Processing if data record not found.
. If record not found, send error message and quit.

. If record locked, send error message and quit.

N o »

. USER: Processing after data read.

8. Load non-key fields to record format.

9. USER: Processing before data update.

10. Update record.

11. If update failed, send error message and quit.

12. USER: Processing after data update.

In a CHGOBIJ built over a PHY access path, the processing includes these steps:

1. Load key and non-key fields to record format.
2. USER: Processing before data update.

3. Update record.

4. If update failed, send error message and quit.

5. USER: Processing after data update.

The following notes apply to these situations:

The pre-update file access is not generated. This is normally generated as an
RPG CHAIN or as a COBOL READ statement.

Any action diagram code in the following User Points is ignored, and no code is
generated for them:

- USER: Processing before data read
- USER: Processing if data record not found
- USER: Processing after data read

A CHGOBIJ created over a PHY access path can be attached only to a RTVOB)
built over the same PHY access path. This is because of the i OS requirement
that a record to be changed must have been read previously.

Chapter 3: Defining Functions 67

Database Functions

Delete object (DLTOBJ)

In a normal DLTOBJ, the processing includes these steps:
1. USER: Processing before data update.
2. Access file to check if record still exists.
3. If record already deleted, send error message and quit.

If record locked, send error message and quit.

5. Delete record.
6. If delete failed, send error message and quit.
7. USER: Processing after data update.

In a DLTOBIJ built over a PHY access path, the processing includes these steps:
1. USER: Processing before data update.
2. Delete record.
3. If delete failed, send error message and quit.
4. USER: Processing after data update.

The following notes apply to these situations:

m A DLTOBJ created over a PHY access path is created with no parameters. You
must ensure that the record to be deleted was read in a RTVOBIJ built over the
same PHY access path. Thus, the DLTOBJ should be inserted only in the USER:
Process data record User Exit Point in the RTVOBJ.

m The pre-delete file access is removed. This is normally generated as an RPG
CHAIN or as a COBOL READ statement.

m Any code in the USER: Processing if data record already exists User Point is
ignored.

m A DLTOBIJ built over a PHY access path can be attached only to a RTVOBJ built
over the same PHY access path.

68 Building Applications

Database Functions

Create object (CRTOBJ)

In a normal CRTOBYJ, the processing includes these steps:

1. Load parameters to record format.

. USER: Processing before data update.

. Access file to check if record already exists.

. USER: Processing if data record already exists.

. If record already exists, send error message and quit.
. Write record.

. USER: Processing if data update error.

. If write failed, send error message and quit.

© 00 N O U B W N

. USER: Processing after data update

In a CRTOBJ built over a PHY access path, the processing includes these steps:

1. Load parameters to record format.

2. USER: Processing before data update.

3. Write record.

4. USER: Processing if data update error.

5. If write failed, send error message and quit.

6. USER: Processing after data update.

The following notes apply to these situations:

The pre-create file access is removed.

Any code in the USER: Processing if data record already exists User Point is
ignored.

A CRTOBI built over a PHY access path cannot be used in any function that also
contains a RTVOBIJ built over the same PHY access path. This is because the file
definition requirements of a PHY access path used for CRTOBIJ are different
from those used for CHGOBJ, DLTOBJ, or RTVOBJ. However, the Action Diagram
Editor registers an error only if you attempt to attach the CRTOBJ to a RTVOBJ
directly. If you attach a CRTOBI to, for example, an EXCEXTFUN that also
contains a PHY RTVOBJ, the Editor does not register an error, but the function
compilation will fail.

Chapter 3: Defining Functions 69

Database Functions

Using Functions Built Over PHY Access Paths

This is a quick reference table with information about functions built over PHY
access paths:

Database Function Attaching to: Allowed by Action Diagram
Compiler? Editor Error?
Retrieve object CRTOBJ over same No Yes
PHY access path
Retrieve object Other function Yes n/a
Change object RTVOBJ over same Yes n/a
PHY access path
Change object Other function No Yes
Delete object RTVOBJ Yes n/a
Delete object Other function No Yes
Create object RTVOBJ over same No Yes
PHY access path
Create object Other function No No
containing RTVOBJ
Create object Other function Yes n/a

Consider the following points when using functions built over PHY access paths:

Because some error checking has been removed from these functions, the
application designer must ensure that applications using these functions do not
run at the same time as other functions that use these files. Otherwise, locks
may be placed on records that these functions need to read.

CHGOBJ and DLTOBI functions built over a PHY access path can be used only in
a RTVOBIJ built over the same PHY access path. This ensures that the record to
be changed or deleted has just been read in the RTVOBJ.

A CRTOBIJ function built over a PHY access path can be used only in a function
that does not contain a RTVOBJ, CHGOBJ, or DLTOBIJ built over the same PHY
access path. We suggest that you create an Execute external function
(EXCEXTFUN) with the same parameters as the CRTOBJ, include only the
CRTOBIJ in that function, and access the PHY CRTOBJ by using that function.

Although the generators create code differently for the RTVOBJ, CHGOBJ,
DLTOBJ, and CRTOBIJ functions, the action diagram for each function does not
change. This may cause confusion, because User Points are visible in the action
diagram and statements can be entered in them, but those User Points may
not be generated.

70 Building Applications

Device Functions

Array Processing

To add, delete, modify, or retrieve entries in a particular array over which they are
defined, use the following database functions:

m Create Object (CRTOBI)
m Delete Object (DLTOBIJ)
m Change Object (CHGOBJ)
m Retrieve Object (RTVOBJ)

A DLTOBJ with no parameters clears an array.

Although arrays are not implemented as database files, CA 2E allows you to use the
same techniques as database files when working with arrays.

Note: You must define a key for an array even if the array holds a single element.

Device Functions

In addition to the database functions, CA 2E also provides standard device functions as
follows.

Understanding Device Functions

Device functions are interactive panels or reports. Panel device functions present the
interactive user interface between the end user and the application. Report device
functions provide a method of defining a written presentation of data. All device
functions, with the exception of PRTOBJ, are implemented as external functions. PRTOBJ
is an internal function.

Defining Device Functions

CA 2E provides comprehensive interactive design facilities that allow you to specify a
panel or report layout. CA 2E interactive device design editor allows you to define field
attributes, positioning, conditioning, user function keys, and panel or report literals for
interactive display or written presentation.

You access this interactive editor from the Edit Functions, Edit Function Devices, or the
Display All Functions panels.

Chapter 3: Defining Functions 71

Device Functions

The device standard header device functions are:

Define Screen Format (DFNSCRFMT)—This function allows you to define a standard
screen header and footer for use by other functions that have screen designs
attached to them

Define Report Format (DFNRPTFMT)—This function allows you to define a standard
report header and footer for your Print File report functions

The single-record device functions are:

Prompt Record (PMTRCD)—Defines a program to prompt for a list of fields defined
by a specified access path. The validated values can be passed to any other
function.

Display Record (DSPRCD)—Defines a program to display a single record from a
specified database file. If no key is supplied, a key panel prompts for a key.

Display Record 2 panels (DSPRCD2)—Defines a program that is identical to the
DSPRCD function, except that it allows the database record details to extend to two
separate display device pages.

Display Record 3 panels (DSPRCD3)—Defines a program that is identical to the
DSPRCD function, except that it allows the database record details to extend to
three separate display device pages.

Edit Record (EDTRCD)—Defines a program to maintain (add, change, and delete)
records on a specified file, one at a time. If no key is supplied, a key panel prompts
for a key.

Edit Record 2 panels (EDTRCD2)—Is identical to the Edit Record function, except
that it allows the record details to extend to two separate display pages.

Edit Record 3 panels (EDTRCD3)—Is identical to the Edit Record function, except
that it allows the record details to extend to three separate display pages.

The multiple-record device functions are:

Display File (DSPFIL)—Defines a program to display the records from a specified
file, many at a time, using a subfile. The subfile is loaded a page at a time when you
press Rollup or F8.

Select Record (SELRCD)—Defines a program that displays the records from a
specified file, many at a time, using a subfile. The program allows you to select one
of the records. The selected record is returned to the calling program. This function
is called from a function that requested a selection list.

Edit File (EDTFIL)—Defines a program to maintain the records on a specified file,
many at a time, using a subfile. The subfile is loaded a page at a time when you
press Rollup or F8.

72 Building Applications

Device Functions

The single- and multiple-record device functions are:

m Display Transaction (DSPTRN)—Defines a program to display the records from a
specified pair of database files. The pair must be connected by an Owned by or
Refers to relation.

m Edit Transaction (EDTTRN)—Defines a program to maintain the records on a
specified pair of header and detail files. The pair must be connected by an Owned
by or Refers to relation.

The printer device functions are:

m Print File (PRTFIL)—Defines a program to print records from a specified access path.

®m Print Object (PRTOBJ)—Defines a particular report fragment which prints the
records from a specified access path at any point within a Print File function. Print
Object functions can be embedded within other Print Object functions.

Device Functions’Standard Features

All HLL programs that implement device functions use standard techniques for each of
the following aspects of interactive programs.

Chapter 3: Defining Functions 73

Device Functions

Standard Features—User Interface

Diagnostic messages—If an error is detected in a CA 2E generated program, a
message is sent to the program’s message queue. All interactive programs have a
message subfile to show the pending messages on the program’s message queue.
This message handling technique makes full use of the sophisticated message
handling capabilities of i OS, allowing both second level text and substitution
variables. It also ensures that applications can be translated easily into other
national languages.

Highlighting of errors—Any field found to be in error is highlighted in reverse
image. The cursor is positioned at the first of these fields.

On-line Help text—All the interactive programs generated by CA 2E include
processing to call a program to display Help text when the Help key or F1 is pressed.

Print key—The print key is enabled to allow panel prints. The name of the print key
spool file can be controlled with the YPKYVNM model value.

Selection columns—Subfiles that allow selection of individual items always have
the selection column on the left.

Function key usage—Function key usage is standardized to follow CUA standards:
for example, F3 is exit.

For more information on function key usage, see Function Key Defaults in the
chapter "Setting Default Options for Your Functions."

Positioning facilities—When appropriate, programs that use subfiles have a
positioning field on the subfile control record that you can use to control which
records are shown in the subfile.

Standard Features—Processing Techniques

Single Page Subfile (SFL) load up—Programs that use SFLs only load the SFL on a
demand basis. Normally, this means only when the Rollup key or F8 is pressed. This
makes their performance more efficient. However, the device function types that
need to read all of a restricted number of records (namely the EDTTRN and DSPTRN
functions) reads more than a page of records at a time if appropriate.

Concurrency checking and record locking—Programs that update the database do
not generally hold a lock on the database while the changes to the database are
being entered and validated; that is, between reading an existing record and
updating it. Instead, they include processing at the point of update to check that
records were not altered by other users since the record was first accessed by the
updating program. This approach prevents locking out any concurrent users or
batch processes who or which may also need to update the file.

Overflow handling—CA 2E generated report functions include exception handling
to cope with page overflow. You can specify whether headings are reprinted or not.

74 Building Applications

Device Functions

Device Function Program Modes
Each of the programs specified by CA 2E standard device functions operate in one or
more modes, depending on the function type. Program modes give the user a simple

way of controlling program behavior.

The following table shows the program modes by function type.

Function Type *ADD *CHANGE *SELECT *DISPLAY *ENTER

PMTRCD - - - Y

DSPRCD1,2,3 - - - Y -

DSPFIL - - - y -

EDTRCD1,2,3 Y Y - - -

EDTFIL Y Y - - -

SELRCD - - Y - -

DSPTRN - - - Y -

EDTTRN Y Y - - -

Note: Program modes do not apply to report functions.

Classification of Standard Functions by Type

The following table lists the standard function types.

Function Type Abbreviatio Class Imp Dev Action Param Function
n Diagram s Option

Retrieve Object RTVOBIJ dbf int - Y Y Y
Change Object CHGOBJ dbf int - Y Y Y
Create Object CRTOBI dbf int - Y Y Y
Delete Object DLTOBI dbf int - Y Y Y
Define Screen DFNSCRDSN dfnscr int - - - Y
Header

Define Report DFNRPTDSN dfnrpt int - - - Y
Header

Prompt and Validate PMTRCD devscr ext Y Y (0] Y
Display Record DSPRCD devscr ext Y Y 0] Y

Chapter 3: Defining Functions 75

User Functions

Function Type Abbreviatio Class Imp Dev Action Param Function

n Diagram s Option
Display Record (2 DSPRCD2 devscr ext Y Y 0] Y
panels)
Display Record (3 DSPRCD3 devscr ext Y Y 0] Y
panels)
Edit Record EDTRCD devscr ext Y Y 0] Y
Edit Record (2 EDTRCD2 devscr ext Y Y (e} Y
panels)
Edit Record (3 EDTRCD3 devscr ext Y Y (e} Y
panels)
Display File DSPFIL devscr ext Y Y (0] Y
Select Record SELRCD devscr ext Y Y (0] Y
Edit File EDTFIL devscr ext Y Y (e} Y
Display Transaction ~ DSPTRN devscr ext Y Y (e} Y
Edit Transaction EDTTRN devscr ext Y Y 0 Y
Print File PRTFIL devrpt ext - Y (0] Y
Print Object PRTOBJ devrpt int Y Y (0] Y
Execute Internal EXCINTFUN usr int - Y (0] Y
Funct.
Execute External EXCEXTFUN usr ext - Y (0] Y
Funct.
Execute User EXCUSRPG usr ext - - O Y
Program M
Execute User Source EXCUSRSRC usr int - - O -
dbf = database ext = rpt =
file dev = device external report
dfn = define int= scr

internal =screen

O= usr = use

Optional

User Functions

CA 2E provides you with standard user functions as described in the following sections.

76 Building Applications

User Functions

Understanding User Functions

User functions provide the means of implementing additional user processing within an
existing function or as an independent implementation used in conjunction with an
existing function. There are four basic user functions: Execute External Function,
Execute Internal Function, Execute User Program, and Execute User Source.

Function Action Diagram Implementation
EXCEXTFUN Yes External
EXCINTFUN Yes Internal
EXCUSRPGM No External
EXCUSRSRC No Internal

Defining Free-Form Functions

Free-form user functions provide the means of specifying actions that can be used
within a function or called from a function to perform a series of procedures. These
functions do not conform to any predefined structure and the contexts of these
functions are entirely composed of actions. You define these function types at the Edit
Functions panel. The processing logic for these functions is defined with the Action
Diagram Editor.

The free-form functions are:

m Execute Internal Function (EXTINTFUN)—This function allows you to specify a
section of an action diagram for repeated use in other functions.

m Execute External Function (EXCEXTFUN)—This function allows you to specify a HLL
program using an action diagram.

Chapter 3: Defining Functions 77

Messages

Defining User-Coded Functions

Messades

User coded functions are functions that are user-written in a HLL. They can be called
from another function or embedded within a function.

The user-written coded functions are:

m Execute User Program (EXCUSRPGM)—This function allows you to describe the
interface to a user written HLL program so that it can be referenced by functions.
Parameters can be specified on the call.

m Execute User Source (EXCUSRSRC)—This function specifies either:

- User-written HLL code to perform an arbitrary function that is to be included
within the source generated by CA 2E for an HLL program.

— Device language statements, for example, DDS that can be applied to a device
function to customize the associated device design.

You define these function types at the Edit Functions panel. The user-coded functions
are called or referenced by any function. However, they do not have an associated
action diagram. You can edit the source directly from within CA 2E.

An EXCUSRPGM function generally is an existing program that you integrate into your
application. This process typically requires you to rename the default name for the
function to the name of the existing user program. DDS names must match for
EXCUSRPGM or source copied into functions.

EXCUSRSRC function types must be of the same HLL source type as that of any functions
that call them.

CA 2E provides you with standard message functions. They are described below.

78 Building Applications

Messages

Understanding Messages

An i OS message file is an i OS object that contains individual message descriptions. A
message description is a unit within the message file that contains specific information.
The message description includes the message identifier, the message text, and other
details about the message. You specify substitution variables that allow data to be
inserted within the text when the message is used.

The message functions allow the user to

m Define messages of varying types

m Specify different message files to which the message is attached
m Specify substitution variable parameters

m Change message identifiers

Basic Properties of Messages

CA 2E provides default system names for messages and provides the means to override
the message file names and message identifiers. CA 2E provides six message types:
completion, error, execution, information, retrieval, and status. Parameters can be
defined for message functions. Parameters correspond to fields or files.

CA 2E provides default messages that correspond to default logic processing inherent in
CA 2E external functions. These messages include default existence and not found
messages created for all files.

The message functions are:

m Send Error Message (SNDERRMSG)—This function specifies that an error message
be sent to a calling function. Normally, this function is used to provide diagnostic
messages arising from user validation.

m Send Information Message (SNDINFMSG)—This function specifies that an
informational message be sent to the message queue of a calling program.

m Send Completion Message (SNDCMPMSG)—This function specifies that a
completion message be sent to the function that called a standard function.
Typically, completion messages are used to indicate that a process completed
successfully.

m Send Status Message (SNDSTSMSG)—This function specifies that a status message
be sent to a calling function. Normally, this function is used to provide information
about the progress of a long-running process.

m Retrieve Message (RTVMSG)—This function specifies that message text be
retrieved from the message file into a function.

m Execute Message (EXCMSG)—This function specifies that a request message be
executed. The request can be any CL command.

Chapter 3: Defining Functions 79

Messages

Defining Messade Functions

You define your message functions using the following instructions.

Specifying Messade Functions Details

Message functions are defined at the Edit Message Functions panel.

1. Atthe Edit Database Relations panel, type *M in the Object field and press Enter to
get to the message subfile.

The *MESSAGES file appears.
2. Type F next to a relation for the selected file.
The Edit Message Functions panel appears.
3. Press F9 to define a new message.
4. Go to a blank subfile line on the Edit Message Functions panel.

5. Enter the message function name and message type from one of the available
option types described previously. If you are uncertain of the type of message, type
? in the Type field to display a list of valid values.

Note: You can define and modify messages while editing an action diagram.

80 Building Applications

Messages

Specifying Parameters for Messages

A parameter is used within the text portion of a message. During generation, the
parameter’s value displays. Parameters can be specified for a message function using
the following instructions:

1. Use the previous instructions to get to the Edit Message Functions panel.
2. Type P next to the selected message function.
The Edit Function Parameters panel appears.
3. Define the parameter.
Note: When the data type of a parameter allows value mapping, such as all date and
time fields, the parameter is generally converted to its external format before the

message is sent. However, due to limitations within i OS, the parameter data for the TS#
data type is passed in its internal format, namely, YYYY-MM-DD-HH.MM.SS.NNNNNN.

A parameter can be defined for a message function to allow substitution of the
parameter’s value into the text portion of the message identifier.

For example, to insert a field’s value in an error message when the credit limit is
exceeded for a customer, enter the following:

Credit limit exceeded for &1.

The parameter value &1 is inserted into the message text at execution time. You must
then define &1 as an input parameter value to the message function. If this is an error
message, it also causes the field associated with the parameter &1 to display using the
error condition display attribute for the field. By default, this is reverse image.

Specifying Second-Level Message Text

Second-level text defines a full panel of information that you can choose to display for
any message that is issued. It is also used to define the text of messages to executed on
a platform-by-platform basis. To specify second-level message text:

1. Use the previous instructions to get to the Edit Message Functions panel.
2. Type Z next to the selected message function.

The Edit Message Function Details panel appears.
3. PressF7.

The Edit Second Level Message Text panel appears.

4. Specify the second-level message text.

Chapter 3: Defining Functions 81

Function Fields

Function Fields

CA 2E provides function fields. They are described in the following sections.

Understanding Function Fields

Function fields are special types of fields that you can use in device designs and action
diagrams. The attributes of a function field are typically based on other fields. In
addition, to specify the field definition you can optionally specify processing for a
particular function field based on the function field usage.

82 Building Applications

Function Fields

Basic Properties of Function Fields
There are six different types or usages of function fields. The following four usages
provide standard field level functions:
m Sum (SUM)
m Count (CNT)
® Maximum (MAX)
® Minimum (MIN)
The other two fields enable you to define your own function fields, either with or

without a user-specified calculation to derive the field. These function field usage types
are:

m Derived (DRV)
m User (USR)

Function field parameters specify which field values are passed into the function at
execution time and, inversely, which field is returned from the function as the result
field.

Derived (DRV) function fields must have one output parameter and can have many input
parameters.

Maximum (MAX), Minimum (MIN), Count (CNT) and Sum (SUM) function fields have
only one output parameter (the field itself) and only one input parameter that defines a
field on which the calculation is based.

USR usage function fields have no associated parameters. These fields are typically used
as work fields in an action diagram.

DRV usage function fields have associated action diagrams. A free-form action diagram
shell (such as for EXCINTFUN) is associated with the derived function field to specify
processing steps.

Chapter 3: Defining Functions 83

Function Types, Message Types, and Function Fields

Design Considerations

Function fields can be pulled into a panel display or a report. The function fields appear
on the device design. However, the special characteristics inherent in each function field
type allow you to specify unique processing.

For example, a user could specify a SUM function field to sum a computed total for all of
the detail lines on an EDTTRN function called Edit Orders display. The SUM field is used
to compute a value from an occurrence of a field in a detail format, with the result
placed in the summation field in a header format.

Note: The totaling function fields, MIN, MAX, SUM, and CNT are only valid for header or
detail display functions such as Display Transaction and Edit Transaction as well as print
functions (Print Object and Print File).

Defining Function Fields

Function fields are defined in the same way that database fields are defined by using the
Define Objects panel. You can access this panel by pressing F10 on the Edit Database
Relations panel or by pressing F10 on the Display All Fields panel.

Because you can access the Display All Fields panel while editing an action diagram or
device design, you can define function fields while performing other activities.

For more information on defining function fields, refer to this module, in the chapter,
"Modifying Device Designs."

Function fields that require the specification of parameters are DRV, SUM, MIN, MAX,
and CNT. The function field that requires an action diagram is DRV.

For more information on function fields, refer to this module, in the chapter, "Modifying
Action Diagrams."

Function Types, Messade Types, and Function Fields

The CA 2E function types, message types, and function fields are listed in alphabetical
order on the following pages with a detailed description of each.

For more information on the specific user points for these function types, see the
Understanding User Points topic in the chapter, "Modifying Action Diagrams."

84 Building Applications

Function Types, Message Types, and Function Fields

Database Function

CHGOBJ The Change Object (CHGOBJ) function defines a routine to update a record in a
file. The CHGOBIJ function includes the processing to check that the record exists before
updating the database record.

There are no device files associated with the CHGOBIJ function. However, it does have
action diagram user points. This function must be attached to an update access path.

Note: For more information on PHY, see the section Internal Database Functions and
PHY Access Paths.

The default CHGOBIJ function is used to update all fields in the database record. If you
want to change only a subset of the fields on the file, you must define a new CHGOBJ
function specifying each field to be excluded as a Neither parameter or define a CHGOBJ
based on a different access path containing only those fields.

A CHGOBI function is provided for every database file and is based on the primary
update access path. It is inserted in the Change DBF Record user point in edit functions
that update changed records.

Note: When a CHGOBIJ is inserted in the Change DBF Record user point, code is
generated to check if the record was changed (by another user) before the record is
updated. However, if a CHGOBIJ is inserted in any other user point of any function type,
this checking is not generated.

All fields on the access path must be provided as Neither, Input, or Both parameters and
cannot be dropped.

The following table shows the parameters available.

Parameters Usage Role Default Option
All fields from access path | - Y
Any other fields Any - - (0]

The following table shows the function options available.

Option Default Value Other Values
Null Update Suppression M(YNLLUPD) N, Y, A
Share Subroutine M(YSHRSBR) N, Y

Chapter 3: Defining Functions 85

Function Types, Message Types, and Function Fields

Null Update Suppression Logic

The null update suppression logic generated in CHGOBIJ functions determines whether
to update the database record as shown in the following steps:

1. Before the After Data Read user point, CHGOBJ saves an image of the original data
record and initializes the *Record data changed PGM context field to * *.

2. CHGOBI performs the following checks.

m Compares the saved image and the current image of the record to determine
whether the data record has changed

m Checks whether logic in the preceding user point explicitly set the *Record data
changed PGM context field to *NO in order to force suppression of the data
update

If the images differ and the *Record data changed field is not *NO, CHGOBJ sets the
*Record data changed field to *YES.

Note: Where and how often the previous checks are done within the CHGOBJ
depends on whether YNLLUPD is *AFTREAD or *YES. If *YES, check is done both
after the After Data Read and after the Before Data Update user points. If
*AFTREAD, the check is done only after the After Data Read user point.

3. Before updating the database record, CHGOBJ checks the *Record data changed
PGM context field. If it is *YES, the database record is updated, otherwise the
record is released.

For more information about:
m YNLLUPD values, see the CHGMDLVAL command in the Command Reference.

m The *Record data changed field and an example, see, Understanding Contexts, PGM
in the chapter "Modifying Action Diagrams"

It is possible to change the primary key of a file using CHGOBJ. However, this is only
valid for RPG/DDS and this generally violates relational database principles. Changing
the primary key should be performed using DLTOBJ function followed by a CRTOBJ
function. In COBOL or SQL, a primary key change must be performed in this way.

For a given based-on access path, if you want to update all database fields in some
functions but only a subset of fields in other functions, create a second CHGOBIJ function
by copying the default CHGOBJ function. On the second CHGOBJ, specify the fields you
do not want to update as Neither (N) parameters. Only fields specified as Input (I)
parameters are updated in the database record. Use the second CHGOBIJ instead of the
default CHGOBIJ in the functions where you want to update the subset of the database
fields.

For more information about:

m How to use a DLTOBIJ function, see DLTOBI later in this chapter

86 Building Applications

Function Types, Message Types, and Function Fields

m The user points for the CHGOBIJ function, see the chapter "Modifying Action
Diagrams"

CNT Function Field

The Count (CNT) function field is a field usage type used within certain functions
(EDTTRN, DSPTRN, PRTFIL, and PRTOBJ) to define a count of a set of records. The CNT
function field must be based on one of the fields in the record format.

In order for CNT to determine which records to count, you must point it to a record on
the device. To do this, CNT must reference one of the fields in the record. The actual
field selected and the values in that field do not affect the result of the CNT function.
The CNT field itself must be a numeric field.

CNT function fields always have two parameters:

m Aresult parameter—This is the actual field itself containing the results of a
summation. You must place the field on a totaling format of the function that uses
the CNT function field.

® An input parameter—This represents a summation of the number of instances or
occurrences of the field being passed. Your input parameter must be on a field on
the detail or subfile record format of the function using the CNT function field.

Note: If you reference this function field to another field, that field defaults to the input
parameter of the CNT function field.

Examples of Count fields:
m Number of employees in a company

m Number of order lines in an order

Chapter 3: Defining Functions 87

Function Types, Message Types, and Function Fields

CRTOBJ Database Function

The Create Object (CRTOBJ) function defines a routine to add a record to a database file.
The CRTOBIJ function includes the processing to check that the record does not already
exist prior to being written to the database. There are no device files associated with
the CRTOBIJ function; however, it does have action diagram user points.

A CRTOBIJ function is provided by default for every database file. All CRTOBJ functions
are attached to an Update (UPD) access path, or can be attached to a Physical (PHY)
path.

Note: For more information on PHY, see the section Internal Database Functions and
PHY Access Paths

The following table shows the parameters available.

Parameters Usage Role Default Option
All fields from access path | - Y R
Any other fields Any - - 0]

The following table shows the function options available.

Option Default Value Other Values

Share Subroutine M(YSHRSBR) N,Y

All fields from the UPD access path must be declared as parameters to the CRTOBJ
function. To exclude certain fields from being written, you should specify them as
Neither parameters. These fields are not automatically initialized. If you use Neither
parameters, you should initialize the fields with blank or zero.

If the UPD access path to which the CRTOBJ function is attached does not contain all of
the fields in the based-on file, the missing fields are set to blank or zero. You can change

this by specifying a value on the Default Condition field of the Edit Field Details panel.

For more information on user points, see the chapter, "Modifying Action Diagrams."

88 Building Applications

Function Types, Message Types, and Function Fields

DFNSCRFMT Device Function

The Define Screen Format (DFNSCRFMT) function defines a standard panel header and
footer for use by other functions that have panel designs attached to them.

There are three default Define Screen Format functions shipped as standard
header/footer formats for the device function panel design:

m *STD SCREEN HEADINGS (CUA) function follows the SAA CUA Entry Model standards
m *STD CUA WINDOW function follows CUA standards for window panels.

m *STD CUA ACTION BAR function follows CUA standards for action bar panels

You can modify these shipped versions as well as add your own DFNSCRFMT functions

for use in specific function panel designs. You can use the Edit Function Options panel of
any panel function to change the DFNSCRFMT function used for that particular function.

When a model is created, the defaults depend on the value given to the DSNSTD
parameter on the Create Model Library command, YCRTMDLLIB.

Use the function options for the DFNSCRFMT functions to set the defaults to be used by
newly created device functions.

Attach the DFNSCRFMT function to the physical (PHY) file access path of the *Standard
header/footer file. This function type does not allow parameters. It does not have an
action diagram.

If you define an additional DFNSCRFMT function, all the fields from the *Standard
header/footer file are available on both formats of the function. You can rearrange or
suppress these fields.

By default, the header and footer formats are as follows:

m For CUA Entry panels, the title is at the top and the command area at the bottom;
for CUA Text, the panel includes an action bar. You can change the location of the
command area using the Edit Screen Format Details panel.

m The fields that can be included in the design of a DFNSCRFMT function are included
in the CA 2E shipped file, *Standard header/footer.

Header and footer formats have instruction lines that are hidden by default.

The following is an example of a CUA Entry Standard panel.

Chapter 3: Defining Functions 89

Function Types, Message Types, and Function Fields

Prongm name Program mode Paneltitle Date Time
| | J L
¥ Y ¥ L
=PROGRAM =PGMMOD + DD-MM-¥Y HH:-MM:55

=5TD SCREEM HEADINGS (CLA)

0000000000000000000Q00

Function Key Explanation

The following is an example of a CUA Text Standard panel.

Program name

Action BEV Program mode Panel title Date Time
iR
Y
Fil% fUndtion Help
>
=PROGRAM =PGMMOD \J DD/HM-YY HH:MM:S5S5

=5TD CUA ACTION BAR

0000000000000000000000000300

90 Building Applications

Function Types, Message Types, and Function Fields

The following is an example of a CUA Text Standard window.

Wlfi ndow title

000000000000000000000

. F3=Exit F4=Prompt

For more information on the function options available, see Identifying Standard
Header/Footer Function Options in the chapter, "Modifying Function Options."

Chapter 3: Defining Functions 91

Function Types, Message Types, and Function Fields

DFNRPTFMT Device Function

The Define Report Format (DFNRPTFMT) function defines a standard report header and
footer for your Print File report functions.

A default DFNRPTFMT function is shipped with CA 2E to define standard header/footer
formats for device function report designs. You can modify the shipped version or add
your own DFNRPTFMT functions for use in specific function report designs. Any new
report device function created by CA 2E uses the shipped DFNRPTFMT function by
default, unless you nominate a different default. To use your own DFNRPTFMT, you can
change the DENRPTFMT for any report function using the Edit Function Options panel.

The fields that can be included in the design of a DFNRPTFMT function are included in
the CA 2E shipped file called *Standard header/footer.

Attach the DFNRPTFMT function to the physical (PHY) file access path of the *Standard
header/footer file.

This function type does not allow parameters. It does not have an action diagram.

By default, the header format for the report starts on line one. This value can be
changed using the Edit Device Format Details panel.

The shipped standard report page header is for a report that is 132 characters wide. To
define a DFNRPTFMT function with a different report width, specify a different value for
the PAGESIZE parameter on the overrides to the i OS Create Print File command
(CRTPRTF) for the function. You do this using the overrides prompt available from the
Edit Function Details panel (F19 function key).

Use the function options for the DFNRPTFMT function to set the default header to be
used by newly created report functions.

The fields of the header are shown in this example in two lines (in practice, the header
extends beyond the limit of one panel).

92 Building Applications

Function Types, Message Types, and Function Fields

Company User Date Rep(I)rt title Page number

00000000000 OOpOOOOOD 00000000000 000000000000000000

v

000000000000000DD0D00 66-66-bb 66:bH:HbH Page: 00000000

== OF REPORT==

End olf report (constant)

Note: Any changes that you want to make to a report header and footer of a report
function must be made by modifying the DFNRPTFMT function associated with the
function. The header fields of report formats shown on the report function itself are
protected.

For more information on the function options available, see Identifying Standard
Header/Footer Function Options in the chapter, "Modifying Function Options.".

Chapter 3: Defining Functions 93

Function Types, Message Types, and Function Fields

DLTOBJ Database Function

The Delete Object (DLTOBJ) function defines a routine to delete a record from a
database file. The DLTOBIJ function includes processing to check that the record is still
on the file before deleting it. You can add processing to a DLTOBJ function such as
processing that performs a cascade delete of any associated records.

The DLTOBJ function does not have device files or function options. However, it has
action diagram user points.

A DLTOBI function is provided for all files. By default, it is normally inserted into the
Delete DBF Record user point in all edit functions.

Note: When a DLTOBJ is inserted in the Delete DBF Record user point, code is generated
to check if the record has been changed (by another user) before the record is deleted.
However, if a DLTOBJ is inserted in any other user point in any function type, this
checking is not generated.

The DLTOBJ function must be attached to an Update (UPD) access path, or can be
attached to a Physical (PHY) access path. The primary key(s) of the UPD access path

must be declared to the Delete Object function; other parameters can also be added.

Note: For more information on PHY, see the section Internal Database Functions and
PHY Access Paths

The following table shows the parameters available.

Parameters Usage Role Default Option
Key fields from access path | - Y R
Other fields Any - - (0]

The following table shows the function options available.

Option Default Value Other Values

Share Subroutine M(YSHRSBR) N, Y

94 Building Applications

Function Types, Message Types, and Function Fields

You can add your own checks to the action diagram of the DLTOBJ function to ensure
that no record is deleted that is referenced elsewhere in the database, ensuring
referential integrity. You would use a Retrieve Object function to check for the existence
of referenced records.

For example, you can allow Customers to be deleted from the Customer file but only if
the Customer is not referenced in an order on the Order file. You could modify the
DLTOBIJ function for the Customer file to include this check by calling a Retrieve Object
function on the Order file. If an Order is found that references the Customer, the
condition Error is moved to the program’s *Return code and tested on return to the
Delete Object function:

> USER: Processing before DBF update

: Retrieve object — Order * <<<
1 . -CASE<<< <<<

| -PGM. *Return code is Error <<< <<<
: |, —QUIT<<< <<<
: , -ENDCASE<<< e

Array DLTOBJ

You can use a DLTOBIJ to delete one element of an array or to clear the contents of an
array. To clear the entire array, define a DLTOBJ over the array and delete all parameter
entries from the DLTOBJ. When this special type of DLTOBJ executes, it clears the
associated array.

DRV Function Field

The Derived (DRV) function field usage is a special field used within functions to perform
a user-defined action to derive the result field. An empty action diagram is initially
associated with the function field.

A DRV field always has one output parameter: the derived field itself. You can specify as
many additional input parameters as required.

Example of a Derived Function Field

An example of a DRV field is a total value field that contains the result of the calculation
of the Quantity multiplied by Price fields. Other examples include retrieval of data from
an access path.

For example, rather than having a virtual field in a file, you could use a derived function
field that includes a RTVOBI to read the file and return a value to the field.

Chapter 3: Defining Functions 95

Function Types, Message Types, and Function Fields

Example of a Compound Condition with Derived Fields

A DRV function field can be used to encapsulate a compound condition. The result
would be a true/false condition. This can be used in an action diagram or to condition a
device field. Similarly, DRV function fields can be used to encapsulate a compute
expression.

m Derived fields are equivalent to a function call that returns a single variable.
m Derived fields can be used in any function type and are not restricted to device

functions.

For more information on function fields, see Function Field presented earlier in this
chapter.

DSPFIL Device Function

The Display File (DSPFIL) function defines a program to display a list of records from a
specified file using a subfile. The subfile is loaded one page at a time when the scroll
keys are pressed.

The DSPFIL function also allows you to select specific field values within a file by using
fields in the subfile control area of the panel. For each field on the subfile record, an
associated input-capable field is, by default, present on the subfile control area of the
panel design.

96 Building Applications

Function Types, Message Types, and Function Fields

Effects of Parameters

Restrictor Parameters are only for key fields. Specifying restricted key (RST) parameters
to the DSPFIL function restrict the records that are written to the subfile for display.
Only records from the based-on access path with key values that match exactly these
values appear. Restrictor parameters are output only.

Positioner Parameters are only for key fields. The effect of positioner key fields is that
only records from the based-on access path with key values greater than or equal to the
specified positioner key values appear in the subfile. Any key field that is defined to the
DSPFIL function as an Input/Mapped parameter acts as a positioner for the subfile
display.

Selector Parameters are only for non-key fields. The effect of selector fields is that only
records from the based-on access path with data values that match the precise value
specified on the selector field display. You can define the specific criterion for the
selector field on the Edit Screen Entry Details panel.

The choices of selector criteria are:
m Equalto (EQ)

m Not equal to (NE)

m Lessthan (LT)

m less than or equal to (LE)

m Greater than or equal to (GE)
m Contains (CT)

m Greater than (GT)

Any non-key field that is defined as an Input/Mapped parameter acts as a selector for
the subfile display. You should drop, not hide, any fields from the control format that
you do not want to use as selectors. You should drop all positioners and selectors from
the device that you do not require for your function or additional processing can occur
that is not required.

A DSPFIL function can be attached to a Retrieval (RTV), Resequence (RSQ), or Query
(QRY) access path. The access path determines which records are displayed by this
function. Further selection of records can be made by specifying whether a record is
selected in the appropriate point in the action diagram. The QRY access path lets you
specify virtuals as key fields. There is no default update processing on this function.

If you modify the action diagram of a DSPFIL function to call a subsidiary function that
adds or changes the records on the subfile, the changes do not display unless you force
a subfile reload. This can be done by moving the condition *YES to the Subfile Reload
field in the PGM context.

Chapter 3: Defining Functions 97

Function Types, Message Types, and Function Fields

You cannot use a DSPFIL function to change or update records unless you add the
specific logic to do so.

The DSPTRN function differs from the DSPFIL function in that DSPTRN loads an entire
subfile. The DSPFIL function loads only one page of a subfile at a time. For this reason,

the SUM, MAX, MIN, and CNT function fields are only valid in the DSPTRN function.

Note: For the same reason, SUM, MAX, MIN, and CNT are also valid in the Edit

Transaction (EDTTRN) function and not in the Edit File (EDTFIL) function. To do this type
of calculation with a DSPFIL function, you can use a RTVOBJ function to read the records

and accumulate the calculation into a work field.

The following is an example of a Display File.

DD/MM-¥Y HH:MM:55

66
66
66
66
66
b6
66
66

=PROGRAM =PGMMOD
Display Product

Product Product name List
code price
Type options. press Enter.
Opt Product Product Name List

Code Price

000000 00000000000000000000 G6EGA .
_ 000000 00000000000000000000 66666 .
_ 000000 00000000000000000000 66666 .
_ 000000 00000000000000000000 66666 .
_ 000000 00000000000000000000 66666 .
_ 000000 00000000000000000000 66666 .
— 000000 00000000000000000000 66666 .
_ 000000 00000000000000000000 66666 .
- 000000 00000000000000000000 66666 .
— 000000 00000000000000000000 66666 .
F3-Exit F4=-Prompt

The following table shows the parameters available.

Parameters Usage Role Default Option
Return code B - Y R
Part/fully restricted key | RST - (0]
Key fields | MAP - (e}
Other fields Any -/MAP - (0]

98 Building Applications

Function Types, Message Types, and Function Fields

Any key field defined to the DSPFIL function as an Input/Mapped parameter acts as a
positioner for the subfile display. Any non-key field defined as an Input/Mapped
parameter acts as a selector for the subfile.

The following table shows the function options available.

Options Default Value Other Values

Subfile selection Y N

Subfile end M(YSFLEND PT

Send all error messages M(YSNDMSG) Y, N

Confirm prompt N Y

Confirm initial value M(YCNFVAL) Y, N

Post confirm pass N Y

If action bar, what type? M(YABRNPT) A D

Commit control N (*NONE) M(*MASTER), S(*SLAVE)

Generate error routine M(YERRRTN) Y, N

Reclaim resources N Y

Closedown program Y N

Copy back messages M(YCPYMSG) Y, N

Generation mode A D,S, M

Screen text constants M(YPMTGEN) LI

Generate help M(YGENHLP) Y,N, O

Help type for NPT M(YNPTHLP) T, U

Workstation implementation M(YWSNGEN) N(NPT), G(GUI), J(JAVA),
V(VB)

Distributed File 1/0O Control M(YDSTFIO) S,U,N

If the DSPFIL function is attached to an CA 2E access path with a multipart key, the
display can be restricted on the major key by passing this key as a restrictor parameter.
The effect of this on the display is to move the restricted key field(s) and the associated
virtuals onto the subfile control and to hide them on the subfile record.

Chapter 3: Defining Functions 99

Function Types, Message Types, and Function Fields

*Reload Subfile

If you modify the action diagram of the DSPFIL function to call a subsidiary function that
adds to or changes the records on the subfile, the changes are not displayed unless you
force a subfile reload. This can be achieved by moving the condition *YES to the *Subfile
reload field in the PGM context; for example:

> USER: command keys

.-CASE <<<
| -CTL.*CMD key is *Change to 'ADD’ <<<
| Add new records function <<<
| PGM.*Reload subfile = CND.*YES <<<
" -ENDCASE <<<

Post-Confirm Pass Function Option

A Post-Confirm Pass function option is available for this function and can be used to
process the subfile records twice. Such a situation might arise if you have added
function fields to the screen, which would be validated in the first (pre-confirm) pass. If
you then wanted to use these values in further processing, you could specify this in the
post-confirm pass.

For more information about:
m Post-confirm pass, see DSPTRN later in this chapter

m On user points, see the chapter "Modifying Action Diagrams"

DSPRCD Device Function

The Display Record (DSPRCD) function defines a program to display a single record from
a specified database file. If you do not supply a key value to the function during
execution, or if you supply only a partial key, a key value panel prompts you for the key
value(s). After supplying the key value(s), the remaining fields in the record appear. All
or some of the keys can be supplied as restrictor parameters. If the parameter list
contains all the key fields as restrictors, the key panel is bypassed.

All fields on the DSPRCD panel design are output capable only, by default.

You can attach a DSPRCD function to Retrieval (RTV) or Resequence (RSQ) access paths.
The access path determines which fields and which records are available for display.
There is no default update processing in this function.

The DSPRCD function executes in *DISPLAY mode only. There are two display panels for
this function type: a key panel which prompts for the key values and a detail panel
which displays the remaining fields as defined by the device design and the access path.

100 Building Applications

Function Types, Message Types, and Function Fields

Design Considerations

For a single record display panel such as DSPRCD, CA 2E places the fields on the panel
design in the following manner.

m Key fields from the based-on access path are placed, one field per line, on both key
and detail panels

m Non-key fields from the based-on access path are placed, one field per line, on
detail panel designs

The following is an example of a Key panel.

=PROGRAM =PGMMOD DD-MM-YY HH:MM:55
Display Customer

Customer code .

F3=E=it F4=Prompt

The following is an example of a Detail panel.

=PROCRAM =PCGHMOD DD/MM/YY HH:MM:5S
Display Customer Details

Costomer code = 000000

Customer name = 00000000000000000000
Customer address . . : 0000000000000 000000000000
Customer city = 00000000000000000000
Customer state . . . : 00000000000000000000
Customer country . . : 0000000000000 0000000
Customer credit limit : 6666666

Customer Allow Credit : 0

Customer postal code - 00000

Customer phone number : 6666666666

Customer status . . . : 000

F3=Exzit F4=Prompt F12=FKey screen

Chapter 3: Defining Functions 101

Function Types, Message Types, and Function Fields

The following table shows the parameters available.

Parameters Usage Role Default Option
Return code B - Y R
Part/fully restricted key | RST -

Other fields Any -/MAP -

Parameter fields with a role of Map, which cannot be mapped to any existing field are
placed on the display before the other fields.

The following table shows the function options available.

Options Default Value Other Values

Confirm prompt N Y

Confirm initial value M(YCNFVAL) Y, N

Send all error messages M(YSNDMSG) Y, N

If action bar, what type? M(YABRNPT) A D

Commit control N(*NONE) M(*MASTER), S(*SLAVE)
Generate error routine M(YERRRTN) Y, N

Reclaim resources N Y

Closedown program Y N

Copy back messages M(YCPYMSG) Y, N

Generation mode A D,S, M

Screen text constants M(YPMTGEN) LI

Generate help M(YGENHLP) Y,N,O

Help type for NPT M(YNPTHLP) T, U

Workstation M(YWSNGEN) N(NPT), G(GUI), J(JAVA),
implementation V(VB)

Distributed file 1/0 Control M(YDSTFIO) S,U,N

For more information about:

®m Function options see the chapter, "Setting Default Options for Your Functions"

m User points see the chapter, "Modifying Action Diagrams"

102 Building Applications

Function Types, Message Types, and Function Fields

DSPRCDZ2 Device Function

The Display Record (2 panels) (DSPRCD2) function defines a program that is identical to
the Display Record function except that it allows the database record details to extend
into two separate display device panels. You can use the scroll keys to move between
the panels of details. This function type would be suitable to use with files that contain
many fields.

The DSPRCD2 function executes in *DISPLAY mode only. There are three display panels
associated with this function type: a key panel that prompts for the key values, and two
detail panels which display, by default, all of the fields from the based-on access path.
On any panel, you can hide any fields that you do not want to appear. In addition, the
same field can appear on more than one detail panel.

This panel is used to display a record that has more fields than currently fit into a single
panel. All of the considerations that apply to Display Record also apply to DSPRCD?2.

The following is an example of Key panel.

=PROGRAM =PGMMOD DD/MM-YY HH:MM:55
Display Customer Rey

Type choices, press Enter.

Customer code .

F3-Exzit F4-Prompt

Chapter 3: Defining Functions 103

Function Types, Message Types, and Function Fields

The following is an example of Detail Panel 1.

=PROGRAM =PGMMOD DD/MM/YY HH:MM:SS
Display Customer Details

Customer code : Q00000

Customer name : G0000000000000000000
Customer address . . : Q0000000000000 0Q00QQOMQ00
Customer city = 00000000000000000000
Customer state . . . : 00000000000000000000

F3=Exit F4=Frompt F12=Key screen

The following is an example of Detail Panel 2.

=PROGRAM =PGMMOD DDMM-YY HH:MM:55
Display Customer Details

Customer code : 000000
Type changes, press Enter.

Customer status . . . : 000
Customer credit limit : 6b6EE666

F3=Exit F4=Prompt F12=Key screen

Note: For more information, see the Knowledge Base article The working and limitations

of EDTRCD2, EDTRCD3, DSPRCD2 and DSPRCD3 function types.

104 Building Applications

https://support.ca.com/irj/portal/anonymous/kbtech?searchID=TEC563632&docid=563632
https://support.ca.com/irj/portal/anonymous/kbtech?searchID=TEC563632&docid=563632
https://support.ca.com/irj/portal/anonymous/kbtech?searchID=TEC563632&docid=563632

Function Types, Message Types, and Function Fields

DSPRCD3 Device Function

The Display Record (3 panels) (DSPRCD3) function defines a program that is identical to
the Display Record function except that it allows the database record details to extend
into three separate display device panels. You can use the scroll keys to move between
the panels of details. This function type is suitable to use with files that contain many
fields.

The DSPRCD3 function executes in *DISPLAY mode only. There are four display panels
associated with this function type: a key panel that prompts for the key values, and
three detail panels that display, by default, all of the fields from the based-on access
path. On any panel, you can hide the fields that you do not want to appear. In addition,
the same field can appear on more than one detail panel.

This panel is used to display a record that has more fields than currently fit into a single
panel.

All of the considerations that apply to Display Record also apply to DSPRCD3.

The following is an example of a Key panel.

=PROGRAM =PGMMOD DD/HM-YY HH:MM:535
Display Customer EKey

Type cholces, press Enter.

Customer code .

F3=Exit F4=Prompt

Chapter 3: Defining Functions 105

Function Types, Message Types, and Function Fields

The following is an example of a Detail panel 1.

=PROCRAM =PGMMOD
Display Customer Details

Customer code : 000000
Press enter to continue.

Customer pame . . 00000000000000000000

F3=Ezit F4=Prompt F12=Key screcn

DD/MMAYY HH:MM:55

The following is an example of a Detail panel 2.

=PROGRAM =PGMMOD
Display Customer Details

Custecmer code : 000000
Press enter to continue.

Customer address 0000000000000000000000000

Customer city . : 00000000000000000000
Custcmer state H 00000000000000000000
Customer country : 00000000000000000000

F3=Ezit F4=Frompt Fl2=Fey screen

DD-MM~YY HH:MM:55

106 Building Applications

Function Types, Messade Types, and Function Fields

The following is an example of a Detail panel 3.

=PROGRAM =DGEMMOD DD /MM~YY HH:MM:S55
Display Customer Details

Customer code : 000000
Press enter to continue.

Customer credit limit : bb66666
Customer status . . . : 000

F3=Ezit F4=Prompt F12=Fey screen

Note: For more information, see the Knowledge Base article The working and limitations
of EDTRCD2, EDTRCD3, DSPRCD2 and DSPRCD3 function types.

Chapter 3: Defining Functions 107

https://support.ca.com/irj/portal/anonymous/kbtech?searchID=TEC563632&docid=563632
https://support.ca.com/irj/portal/anonymous/kbtech?searchID=TEC563632&docid=563632
https://support.ca.com/irj/portal/anonymous/kbtech?searchID=TEC563632&docid=563632

Function Types, Message Types, and Function Fields

DSPTRN Device Function

The Display Transaction (DSPTRN) function defines a program that displays the records
from two distinct but related database files. The files must connect by a file-to-file
relation. The relation that connects the files must be an Owned by or a Refers to
relation.

The DSPTRN function has two distinct record formats:

m A header or master record format that corresponds to the owned by or referred to
file and is in the subfile control portion of the panel

m Adetail record format that corresponds to the owned by, referred to, or referring

file and appears as a subfile

The DSPTRN function loads the entire subfile, and is suitable for using SUM, MIN, CNT,
and MAX function fields.

A typical use of DSPTRN is to display an Order Header at the top of the panel with a
subfile of the associated Order Details below.

The key fields in the header format are input-capable. All non-key fields in the header
format are by default output only, .

All fields in the detail format are by default output capable.

If no key, or a partial key is supplied to the DSPTRN function, the key fields from header
format appear, prompting you for the remainder of the key in order to identify the file.

The DSPTRN function must be attached to a Span (SPN) access path. The SPN access
path connects two record formats with a common partial key. There is no default
update processing for this function type.

In order to be able to create a Span access path:

® An Owned by or Refers to relation must exist between the header and the detail
files

m The SPN access path must be created over the owning file or the referred to file

m The access path must be created explicitly to the SPN access path

The following is an example of a DSPTRN panel.

108 Building Applications

Function Types, Message Types, and Function Fields

=PROGRAM =PGMMOD DD~MM-¥¥ HH:MM:35
Display Order

Order code

Order date Order status . _

Customer code 000000 Q0000000000000000000

Customer credit limit 666bb6b6

Type options, press Enter.

4=Delete
? Line Product Product List Order Line
Code Desccription Price Quantity Total

66 000000 0000000Q0Q0000000 000Q0QO00000000 bbb 6666666 .66CR
_ 66 000000 00000000000000000 000000000000000 bbb 6666666 . 66CR
_ 66 000000 00000000000000000 0000000 0000000 bbb 6666666 .66CR
_ bb 000000 00000000000000000 000000000000000 bbb bbbbbbb .bbCR
_ bb 000000 00000000000000000 000000000000000 115 66660060 .06CR
_ bb 000000 00000000000000000 000000000000000 bbb bbbbbbb . b6CR
_ bb 000000 00000000000000000 00Q000Q000000000 bbb bB666666 . 66CR
— 66 000000 00000000000000000 000000000000000 b66 66bE66E .66CR

66 000000 0000000000Q0000000 QOQQQOOQOOOO000 B66 6666666 .66C +

F3=Ezit F4=Prompt F9=Change

The panel has the default design for a single and multiple style panel.

The following table shows the parameters available.

Parameters Usage Role Default Option
Return code B - Y

Part/fully restricted key hdr key I RST - (e}
Other fields Any -/MAP - (0]

The following table shows the function options available.

Options Default Value Other Values
Subfile selection Y N

Subfile end M(YSFLEND) P, T

Send all error messages M(YSNDMSG) Y,N

Confirm prompt N Y

Confirm initial value M(YCNFVAL) Y,N
Post-confirm pass N Y

If action bar, what type? M(YABRNPT) A D

Commit control N(*NONE) M(*MASTER), S(*SLAVE)
Generate error routine M(YERRRTN) Y, N

Reclaim resources N Y

Chapter 3: Defining Functions 109

Function Types, Message Types, and Function Fields

Options Default Value Other Values
Closedown program Y N

Copy back messages M(YCPYMSG) Y,N

Generation mode A D,S, M

Screen text constants M(YPMTGEN) LI

Generate help M(YGENHLP) Y,N, O

Help type for NPT M(YNPTHLP) T, U

Workstation M(YWSNGEN) N(NPT), G(GUI), J(JAVA),

implementation

V(VB)

Distributed file I/0 Control ~ M(YDSTFIO)

S,UN

For more information on function options, see the chapter "Setting Default Options for

Your Functions."

If no key, or a partial key is supplied to the DSPTRN function, the key fields from the
header format (which are input-capable) display. These fields prompt for the remainder
of the key so that the header record to display can be identified. If the parameter list
contains all of the key fields as restrictors, this step is bypassed.

Note: The current implementation of DDS to DDL conversion does not allow RLA
functions using Span (SPN) access path and based on the DDS database to work, when

the database is converted from DDS to DDL.

110 Building Applications

Function Types, Message Types, and Function Fields

Post-Confirm Pass Function Option

A Post-Confirm Pass function option is available for this function, and can be used to
process the transaction a second time to carry out additional processing. Such a
situation might arise if you have added derived function fields to the control record,
calculated in the pre-confirm pass that you want to use in further calculations for each
subfile line. You could specify these further calculations in a post-confirm pass.

For example, a function field of type SUM can be added to the header format of a
Display Transaction panel to total a value displayed in the detail lines. If a line-by-line
percentage of this total is required, it cannot be achieved in one pass. Calculation of the
SUM field is only completed at the end of the first (pre-confirm) pass, for example:

> USER: Header update processing

; Total detail lines <<<

> USER: Subfile record update processing
: WRK. Pct total = CTL. Total detail lines * RCD. Pct <<<
: RCD. Pct total = WRK. Pct total / CON. 100 <<<

For more information on user points, see the chapter "Modifying Action Diagrams."

Chapter 3: Defining Functions 111

Function Types, Message Types, and Function Fields

Automatic Line Numbering

A common requirement when using Edit Transaction functions is to have line numbers
for the subfile records issued automatically.

For example, Order and Order Line files could be defined as follows:

FIL Order CPT Known by FLD Order CDE
FIL Order CPT Has FLD Order date DTE
FIL Order line CPT Owned by FIL Order CPT
FIL Order line CPT Known by FLD Order date DTE
FIL Order line CPT Refers to FIL Product REF
FIL Order line CPT Has FLD Order quantity QTY

If an EDTTRN type function called Edit Order is created over the Order and Order Line
files, you might want the order line numbers issued automatically. This can be done as
follows:

1. Change the Edit Order function:

a. Use the Edit Device Design panel to add a function field of type MAX to the
order header format (F19), the Highest Line number. This field should be
defined as a REF field, based on the line number, so that it calculates the
highest line number used so far. Neither the MAX field nor the line number
fields need appear on the screen, but can be hidden.

b. Use the Edit Action Diagram panel to change the call the Create Order Line
function so that the Highest Line number field from the CTL context is passed
to the Order Line number parameter of the CRTOBJ function.

2. Change the Create Order line function:

a. Use the Edit Function Parameters panel to change the Order Line number
parameter to be a Both parameter rather than Input parameter so that the
incremented value is returned to the Highest Line number field.

b. Use the Edit Action Diagram panel to increment the Highest line number field
by one before writing to the database. Return the incremented value to the
order line number parameter after writing the record to the database.

For more information on user points, see the chapter "Modifying Action Diagrams."

112 Building Applications

Function Types, Messade Types, and Function Fields

EDTFIL Device Function

The Edit File (EDTFIL) function defines a program to maintain records in a file, many at a
time, using a subfile. The subfile is loaded a page at a time when you press the scroll
keys.

For each key field on the subfile record, there is an equivalent field on the subfile
control header format. Key fields can be used as positioner parameters in the subfile
control format to specify which fields are displayed in the subfile. The subfile has, by
default, all records in the access path as input-capable.

Chapter 3: Defining Functions 113

Function Types, Message Types, and Function Fields

Effects of Parameters

m |f the high order keys are restrictor fields (RST), only records with keys matching the
parameters display.

m [f the high order keys are mapped positioner fields (POS), subfile records display on
the first subfile page starting with the key values that you entered. If the subfile
control field is output only or hidden, it functions as a restrictor field.

m Parameter fields that have a role of MAP are placed on the subfile control format
and not on the subfile record format.

An EDTFIL function can be attached to a Retrieval (RTV) or a Resequence (RSQ) access
path.

If specified in the function options, an EDTFIL function contains calls to the Create
Object, Delete Object, and Change Object functions. To remove functions associated
with these actions, change the function options. You can also modify the default
functions called from the Edit File by editing the action diagram.

For more information on function options, see the chapter, "Modifying Function
Options."

If the EDTFIL function is in *ADD mode, an empty subfile appears. If it is in *CHANGE
mode, a page of records from the based-on access path appear as modifiable fields. You
can change the default function logic for this function type by modifying the action
diagram, and changing the function options. In the resultant program, you can alternate
between *ADD and *CHANGE mode by pressing F9.

The following is an example of an EDTFIL panel.

*PROGRAM *PGMMOD DO-MM-YY HH:iMM:SS
Edit Branch
Branch code .

Type options, press Enter.

4=Pelete
Opt Branch Branch name Branch phone
code numbet

|2 I N |

F3=Exit F4=Prompt F9=Change

114 Building Applications

Function Types, Message Types, and Function Fields

The following table shows the parameters available.

Parameters Usage Role Default Option
Return code B - Y

Part/fully restricted key | RST - (0]
Other fields Any -/MAP _ (0]

The following table shows the function options available.

Options Default Value Other Values
Create record Y N

Change record Y N

Delete record Y N

Dynamic program mode Y N

Subfile selection Y N

Subfile end M(YSFLEND) P, T

Send all error messages M(YSNDMSG) Y, N

Confirm prompt Y N

Confirm initial value M(YCNFVAL) Y, N

If action bar, what type? M(YABRNPT) A D

Commit control N(*NONE) M(*MASTER), S(*SLAVE)
Generate error routine M(YERRRTN) Y, N

Reclaim resources N Y

Closedown program Y N

Copy back messages M(YCPYMSG) Y, N
Generation mode A D,S, M
Screen text constants M(YPMTGEN) LI

Generate help M (YGENHLP) Y,N,O

Help type for NPT M(YNPTHLP) T, U
Workstation M(YWSNGEN) N(NPT), G(GUI), J(JAVA),
implementation V(VB)
Distributed file 1/0 Control M(YDSTFIO) S,U,N

Chapter 3: Defining Functions 115

Function Types, Message Types, and Function Fields

For more information about:
®m Function options see the chapter "Setting Default Options for Your Functions"

m User points see the chapter "Modifying Action Diagrams"

116 Building Applications

Function Types, Message Types, and Function Fields

EDTRCD Device Function

The Edit Record (EDTRCD) function defines a program that maintains records in a
specified file, one record at a time.

The EDTRCD function executes in either *ADD or *CHANGE mode. There are two display
panels for this function type: a key panel that prompts for the key values and a detail
panel that displays all the fields from the based-on access path.

The EDTRCD function has the following default logic:

m |t accepts the key panel (or key values if the key panel was bypassed) and checks for
record existence

= |n *ADD mode, it displays a panel with blank input-capable fields if the record does
not exist

m In *CHANGE mode, it retrieves the record through a RTV or RSQ access path and
displays the record as modifiable, input-capable fields

If no key value, or a partial key value, is supplied as a restrictor parameter, the key panel
prompts for the remainder of the key. By specifying the elements of a composite key as
restrictor (RST) parameters, the key panel is bypassed and the function exits when the
record is changed and Enter is pressed.

The EDTCD function is in *CHANGE mode when first called unless there are no records
existing in the file. If you set the function option Dynamic program mode to Y, the
function automatically chooses the correct mode. You can toggle between *ADD and

*CHANGE modes by pressing F9 on the key panel.

An EDTRCD function can be attached to a Retrieval (RTV) or a Resequence (RSQ) access
path.

By default, an EDTRCD function contains calls to the CRTOBJ, DLTOBJ, and CHGOBJ
functions based on the function options.

You can disable these calls by changing the function options.

The following is an example of a Key panel.

Chapter 3: Defining Functions 117

Function Types, Message Types, and Function Fields

*PROGRAM =PGMHOD DD-MM-YY HH:MM:S5
Sample EDTRCD KEY SCREEN

Branch code .

F3=Exit F4=Prompt F%=Change

The following is an example of a Detail panel.

#PROGRAM *PGMMOD DD-TM-YY HH:MM:SS
Sample EDTRCD Details

Branch code : 0oeoo0
Branch name . L.
Brarnch phone number .

F3=Exit F4=Prompt FlZ2=Key screen

The following table shows the parameters available.

Parameters Usage Role Default Option
Return code B - Y
Part/fully restricted key I RST -
Other fields Any -/MAP -

118 Building Applications

Function Types, Message Types, and Function Fields

The following table shows the function options available.

Options Default Value Other Values
Create record Y N

Bypass key screen N Y

Exit after add N Y

Change record Y N

Delete record Y N

Dynamic program mode N Y

Send all error messages M(YSNDMSG) Y, N

Confirm prompt Y N

Confirm initial value M(YCNFVAL) Y, N

If action bar, what type? M(YABRNPT) A D

Commit control N(*NONE) M(*MASTER), S(*SLAVE)
Generate error routine M(YERRRTN) Y, N

Reclaim resources N Y

Closedown program Y N

Copy back messages M(YCPYMSG) Y, N
Generation mode A D,S, M
Screen text constants M(YPMTGEN) LI

Generate help M(YGENHLP) Y,N,O

Help type for NPT M(YNPTHLP) T, U
Workstation M(YWSNGEN) N(NPT), G(GUI), J(JAVA),
implementation V(VB)
Distributed file 1/0 Control M(YDSTFIO) S,U,N

For more information about:

m Function options, see the chapter "Setting Default Options for Your Functions"

m User point, the chapter, "Modifying Action Diagrams"

Chapter 3: Defining Functions 119

Function Types, Message Types, and Function Fields

EDTRCDZ2 Device Function

The Edit Record (2 panels) (EDTRCD2) function is identical to the Edit Record function
except that it allows the record details to extend to two separate display panels. You
can use the scroll keys to move between the pages of detail. This function type is
suitable for files containing many fields.

The EDTRCD2 function executes in either *ADD or *CHANGE mode. There are three
display panels for this function type: a key panel that prompts for the key values, and
two detail panels that display, by default, all of the fields from the based-on access path.
On any panel, you can hide fields that you do not want to appear. In addition, the same
field can appear on more than one detail panel.

All of the considerations that apply to the Edit Record function also apply to EDTRCD2.

The following is an example of a Key panel.

*PROGRAM =PGMMOD o0-M-YY HH:MM:SS
Sample EDTRCD2 KEY SCREEN

Order code . | |

Fa=Fxit F4=Prompt F%=Change

120 Building Applications

Function Types, Message Types, and Function Fields

The following is an example of a Detail panel 1.

#PROGRAM =PGMHOD
Sample EDTRCDZ Page 1

Order code . : 000000
Customer code . B

Customer name : 00000C0000A000000000
Customer status : 0o

Customer credit limit : 6666666

F3=Exit F4=Prompt F12=Key screen

OD-MM-YY HH:MM:SS

The following is an example of a Detail panel 2.

#PROGRAM #PEMMOD
Sample EDTRCDZ2 Page 2

Order code . : 000000

Product code . | |

Product description : 00000CCCO000GEGE0000
Product price : 66666, 66

Order date
Order status

Fa=Exit F4=Prompt Fi2=Kev screen

D0/MH-¥YY HH:MM:SS

Note: For more information, see the Knowledge Base article The working and limitations

of EDTRCD2, EDTRCD3, DSPRCD2 and DSPRCD3 function types.

Chapter 3: Defining Functions 121

https://support.ca.com/irj/portal/anonymous/kbtech?searchID=TEC563632&docid=563632
https://support.ca.com/irj/portal/anonymous/kbtech?searchID=TEC563632&docid=563632
https://support.ca.com/irj/portal/anonymous/kbtech?searchID=TEC563632&docid=563632

Function Types, Message Types, and Function Fields

EDTRCD3 Device Function

The Edit Record (3 panels) (EDTRCD3) function is identical to the Edit Record function
except that it allows the record details to extend to three separate display panels. You
can use the scroll keys to move between the panels of detail. This function type is
suitable for files containing many fields.

The EDTRCD3 function executes in either *ADD or *CHANGE mode. There are four
display panels for this function type: a key panel that prompts for the key values and
three detail panels that display, by default, all of the fields from the based-on access
path. On any panel, you can hide fields that you do not want to appear. In addition, the
same field can appear on more than one detail panel.

All of the considerations that apply to the Edit Record function also apply to EDTRCD3.

PROGRAM *PEMHMOD DD-MM-YY HHi M S8
Sanple EDTRCD3 KEY SCREEN

Order code . | |

F3=Exit F4=Prompt F%=Change

122 Building Applications

Function Types, Message Types, and Function Fields

The following is an example of a Detail panel 1.

*PROGRAM %PGMMOD
Sample EDTRCO3 Page 1
Order code gooaao
Customer code . [|
Customer name : [s(a]alu(ola]n(aalulalalnia]alula]alny]
Customer status oon
Customer credit limit : [elalalctatat el

F3=bxit F4=Frompt F1Z=Key screen

CD-Mit-YY HH:HMM:SS

The following is an example of a Detail panel 2.

*PROGRAM =PGMMOD

Sample EDTRED3 Page 2
Order code 000000
Employee code

Employee name :
Employee title :

L
0000000000000000000060C00
0

F3=Exit F4=Prompt F12=Key screen

DDAMM-YY HH:MM: S8

Chapter 3: Defining Functions 123

Function Types, Message Types, and Function Fields

The following is an example of a Detail panel 3.

#*PROGRAM *PGMMOD BD-MM-YY HH:MM: 88
Sample EDTRCD3 Page 3

Order code . : 00000

Product code !

Product description : 000000005300000000000
Product price : 66666. 66

Order date
Order status

F3=Exit F4=Prompt F12=Key screen

Note: For more information, see the Knowledge Base article The working and limitations
of EDTRCD2, EDTRCD3, DSPRCD2 and DSPRCD3 function types.

124 Building Applications

https://support.ca.com/irj/portal/anonymous/kbtech?searchID=TEC563632&docid=563632
https://support.ca.com/irj/portal/anonymous/kbtech?searchID=TEC563632&docid=563632
https://support.ca.com/irj/portal/anonymous/kbtech?searchID=TEC563632&docid=563632

Function Types, Message Types, and Function Fields

EDTTRN Device Function

The Edit Transaction (EDTTRN) function defines a program that maintains the records on
a specified pair of header and detail files. The files must be connected by a file-to-file
relation. The relation that connects the files must be an Owned by or a Refers to
relation.

The EDTTRN function has two distinct record formats: a header, or master record
format that corresponds to the owning or referred to file and is in the subfile control
portion of the panel; and a detail record format that corresponds to the owned by, or
referring file, and appears as a subfile. The EDTTRN function loads the entire subfile, and
is suitable for using SUM, MIN, CNT, and MAX function fields.

The EDTTRN function has the following default function logic:

m In *ADD mode, the header keys are accepted as parameters, if provided. By
specifying the keys as restrictor (RST) parameters, the key fields are output only on
the panel. The panel appears with blank input-capable fields in the header master
file and detail subfile record formats. You can then enter data in the header record
format and the detail record format subfile for validation.

m In *CHANGE mode, the header keys are accepted as parameters. If no key, or a
partial key is supplied to the EDTTRN function, the key fields from the header
format display to prompt for the remainder of the key. If the parameter list
contains a fully restricted key, this step does not occur.

m All detail records matching the header record keys are loaded into the subfile. The
panel displays the header record file and the first page of the detail file as a subfile.
You can add, change, or delete subfile records as you want. After successful
validation the file is updated.

Chapter 3: Defining Functions 125

Function Types, Message Types, and Function Fields

An EDTTRN function includes calls to the CRTOBJ, DLTOBJ, and CHGOBIJ functions by
default for both header and detail formats. These default functions are included in the
action diagram for the function. To remove this default processing, you change the
function options. These functions use the associated Update (UPD) access path update.
There can be six separate calls to these internal functions: three calls for the header
format file; three calls for the detail format file.

The EDTTRN function must be attached to a Span (SPN) access path. The SPN access
path connects two record formats with a common partial key.
In order to be able to create a Span access path:

m An Owned by or Refers to relation must exist between the header and the detail
files

m The SPN access path must be created over the owning file or the referred to file

m The access path formats must be added explicitly to the SPN access paths

The typical use of an EDTTRN is to display an Order Header at the top of the panel with a
subfile of the associated Order Detail below.

The EDTTRN function differs from the EDTFIL function in that the EDTTRN function loads
an entire subfile. The EDTFIL function only loads one page of a subfile at a time.

The following is an example of an Edit Transaction panel.

#PROGRAM *PGMMOD DBAM~YY HH:MM:SS
Order entry clerk
frder code . Custorer code .

Customer name : 000000000000000000CED Customer status oop
Customer credit limit : BEE6BES

Erployee code . Employee name : C000000000000000000000000

Employes title : 0 Order dale . Order status .

Type options, press Enter.

4=Delete

? line Product Product descripiion price quantity Line total

code

o 00J0000000C00C000C00 66666, 66 o 6666665, 66CR

_ _ 00000B00000CO0RO00O0NHD &6h6k. HE _ GHLO660 . 66CR
_ 0000000000C00CC00C00 66666, 68 - 6666666, 660R

_ 00000C000Co000C00C0A £66A6. 6 _ 6666666 . 66CR

. 00000C000C000Co00CD0 66666, 56 . 666EH6E . 66CR

- 00000000000000B00CHD &66H66. 65 - 6666665 . 66CK
_ 00000000000000000C00 666566, 66 o 66566665, 66CR

00000Co000OUOGR00000 66666, HE 6666665 . 66CR +

Fa=Exit F4=Prompt F®=Change

126 Building Applications

Function Types, Message Types, and Function Fields

The following table shows the parameters available.

Parameters Usage Role Default Option
Return Code B - Y R
Part/fully restricted key hdr key | RST - 0]
Other fields Any -/MAP - (0]

The following table shows the function options available.

Options Default Value Other Values
Create transaction Y N
Change transaction Y N
Create record Y N
Delete record Y N
Delete transaction Y N
Dynamic program mode N Y
Subfile selection Y Y,N
Subfile end M(YSFLEND) P, T
Send all error messages M(YSNDMSG) Y, N
Confirm prompt Y N
Confirm initial value M(YCNFVAL) Y, N

If action bar, what type? M(YABRNPT) A D
Commit control N(*NONE) M(*MASTER), S(*SLAVE)
Generate error routine M(YERRRTN) Y, N
Reclaim resources N Y
Closedown program N Y
Copy back messages M(YCPYMSG) Y, N
Generation mode A D,S, M
Screen text constants M(YPMTGEN) LI
Generate help M(YGENP) Y,N, O
Help type for NPT M(YNPTHLP) T, U

Chapter 3: Defining Functions 127

Function Types, Message Types, and Function Fields

Options Default Value Other Values

Workstation implementation M(YWSNGEN) N(NPT), G(GUI), J(JAVA),
V(VB)

Distributed file /0 control M(YDSTFIO) S,U,N

For more information on function options, see the chapter "Setting Default Options for
Your Functions."

128 Building Applications

Function Types, Message Types, and Function Fields

Automatic Line Numbering

A common requirement when using Edit Transaction functions is to have line numbers
for the subfile records issued automatically.

For example, Order and Order Line files could be defined as follows:

FIL Order CPT Known by FLD Order CDE
FIL Order CPT Has FLD Order date DTE
FIL Order line CPT Owned by FIL Order CPT
FIL Order line CPT Known by FLD Order date DTE
FIL Order line CPT Refers to FIL Product REF
FIL Order line CPT Has FLD Order quantity QTY

If an EDTTRN type function called Edit Order is created over the Order and Order Line
Files, you might want the order line numbers issued automatically. This can be done as
follows:

1. Change the Edit Order function:

a. Use the Edit Device Design panel to add a function field of type MAX to the
order header format (F19), the Highest Line number. This field should be defis a
REF field, based on the line number, so that it calculates the highest line
number used so far. Neither the MAX field or the line numbers fields appear on
the screen, but can be hidden.

b. Use the Edit Action Diagram panel to change the call the Create Order Line
function so that the Highest Line number field from the CTL context is passed
to the Order Line number parameter of the CRTOBJ function.

2. Change the Create Order line function:

a. Use the Edit Function Parameters panel to change the Order line number
parameter to be a Both parameter rather than Input parameter so that the
incremented value is returned to the Highest Line number field.

b. Use the Edit Action Diagram panel to increment the Highest Line number field
by one before writing the database. Return the incremented value to the order
line number parameter after writing the record to the database.

For more information on user points, see the chapter "Modifying Action Diagrams."
Note: The current implementation of DDS to DDL conversion does not allow RLA

functions using Span (SPN) access path and based on the DDS database to work, when
the database is converted from DDS to DDL.

Chapter 3: Defining Functions 129

Function Types, Message Types, and Function Fields

EXCEXTFUN User Function

The Execute External Function (EXCEXTFUN) allows you to specify a high-level program
using an action diagram. You can also use an EXCEXTFUN as a user-defined *Notepad
function that can serve as a repository of standardized action diagram constructs that
you can easily copy into the action diagrams of other functions.

For more information on user-defined *Notepad functions, see Using NOTEPAD in the
chapter "Modifying Action Diagrams"

The function is implemented as a separate program and has its own action diagram. The
function can be created with an access path of *NONE. You can submit an EXCEXTFUN
function for batch processing from within an action diagram.

The EXCEXTFUN has no default logic. It presents an empty action diagram. Any function
or set of functions of any type can be included in an EXCEXTFUN and compiled so that it
can be executed as a program.

For documentation purposes, the EXCEXTFUN can be optionally attached to Retrieval
(RTV), Resequence (RSQ), or Update (UPD) access paths.

A good practice is to have only a single action diagram construct with an EXCEXTFUN.
This single construct is a call to an internal function (EXCINTFUN) that contains all the
functionality required. Both functions define the same parameters. This way, you can
choose to reference an EXCEXTFUN (function you can call) or EXCINTFUN without
duplicating the action diagram constructs.

The following table shows the parameters available.

Parameters Usage Role Default Option
Return code B - Y R
Other fields Any - - 0]

Parameters of role Varying (VRY) are allowed for this function type.

The following table shows the function options available.

Options Default Value Other Values

Send all error messages M(YSNDMSG) Y, N

Confirm prompt Y N

Confirm initial value M(YCNFVAL) Y, N

Commit control N(*NONE) M(*MASTER), S(*SLAVE)
Generate error routine M(YERRRTN) Y, N

130 Building Applications

Function Types, Message Types, and Function Fields

Options Default Value Other Values

Reclaim resources N Y

Closedown program Y N

Copy back messages M(YCPYMSG) Y,N

Generation mode A D,S, M

Overrides if submitted job * F

Workstation implementation M(YWSNGEN) N(NPT), G(GUI), J(JAVA),
V(VB)

Distributed file 1/0 Control M(YDSTFIO) S,U,N

For more information on function options, see the chapter, "Setting Default Options for
Your Functions."

Chapter 3: Defining Functions 131

Function Types, Message Types, and Function Fields

Using Batch Processing

The following information is an example of how to use an EXCEXTFUN to process
records using a batch process:

Assume the following:

m Each Order has a status containing a condition that reflects the current processing
stage of the order

m Orders for which payments have yet to be received have an Order Status of Unpaid

m Each Order also has an associated Customer Code identifying the customer who
placed the Order, and an Order Total Value indicating the amount due for the Order

m The requirement to process all unpaid Orders and to update the corresponding
customers unpaid value (held in the Customer file) with the total amount owed by
the customer

m Each Order, once processed, has its status changed to Processed

Use the RTVOBJ function, Process All Unpaid Orders, to process the records in the Order
file. The access path attached to the RTVOBJ determines the order in which the records
on the order file are read.

Assume that the Retrieval access path of the Order file is keyed by Order Number. It
would not be advisable to use this access path for the RTVOBJ as there is no need to
process all the Orders in the Order file.

Consequently, you can create and use alternative access paths such as the following:

1. ARetrieval (RTV) access path with select or omit criteria selecting only Unpaid
Orders.

2. A Resequence (RSQ) access path keyed by Order status and Customer code.

The second access path is preferable because a restrictor parameter of Order Status
with a supplied condition EQ Unpaid for the RTVOBJ has the equivalent select or omit
effect on the records retrieved.

Furthermore, having the Customer code as the secondary key presents Unpaid Order
records for each Customer in sequence. This allows the change of Customer code to
indicate the end of a list of Order records belonging to a customer.

This allows the total unpaid value for a Customer to be accumulated and the
corresponding Customer record updated only when all Unpaid Orders for that Customer

are processed resulting in a significant reduction in database I/0.

The logic required in the RTVOBJ, Process All Unpaid Orders, is as follows:

132 Building Applications

Function Types, Message Types, and Function Fields

.> USER: Process Data record

...-CASE
.. |-DB1.Customer code EQ WRK. Saved Customer code
| Continue to accumulate ...
..| WRK.Cust. value unpaid Orders = WRK.Cust. value unpaid orders
+ DB1. Order total value

-*O0THERWISE
Update Cust.unpaid value — Customer *
| Customer code = WRK.Saved Customer code

Save new customer code ...

WRK.Saved Customer code = DB1.Customer code

Reset accumulator ...

WRK.Cust. value unpaid Orders = DB1.0Order total value
.. '-ENDCASE
.. Set Order status to ‘P’ (Still unpaid but Customer updated) ...
. Change Order — Order *

o
I
|
| B Cust. value unpaid Orders = WRK.Cust. value unpaid Orders
I
I
I
I

| Order number = DB1.0rder number
| Customer code = DB1.Customer code

| Order status = CND.Unpaid(Customer updated)
| Order total value = DB1.0rder total value

Since the value for a customer is only updated for a change in Customer, the last
customer record must be accounted for as follows:

. USER: Exit processing
. Update last Customer ...
. Update Cust. unpaid value - Customer *
I Customer code = WRK.Saved Customer code
B Cust. value unpaid orders = WRK.Cust. value unpaid order

The CHGOBJ Change Order is the default CHGOBIJ for the function with no additional
user logic.

The CHGOBJ Update Cust. unpaid value has the following user logic to ensure that the
total value is accumulated onto what is already present for the customer on file as
follows:

Chapter 3: Defining Functions 133

Function Types, Message Types, and Function Fields

> USER: Processing after Data read
. Add to Customers unpaid value ...
. PAR. Cust. value unpaid Orders = PAR.Cust. value unpaid Orders
+ DB1.Cust. value unpaid Orders

Once the functions and logic have been defined, the RTVOBJ, Process All Unpaid Orders,
can be embedded within an EXCEXTFUN Batch process, Unpaid Orders as follows:

> Batch process unpaid orders
Restrict to process only UNPAID orders (i.e. Order status = 'U') ...
Process all unpaid orders - Orders *
I RST Order status= CND.Unpaid

After generating and compiling the EXCEXTFUN, it can be executed in batch using the i
OS SBMJOB or equivalent command. You can choose to execute this command from
another function, such as a PMTRCD acting as a menu, by using the Execute Message
function to submit the function to batch.

For more information about:

m Submitting jobs from within an action diagram, see Submitting Jobs Within an
Action Diagram in the chapter "Modifying Action Diagrams"

m Using the Execute Message function, see EXCMSG Message Function later in this
chapter

134 Building Applications

Function Types, Message Types, and Function Fields

EXCINTFUN User Function

The Execute Internal Function (EXCINTFUN) allows you to specify a portion of an action
diagram that can be used repeatedly in other functions. You can also use an EXCINTFUN
as a user-defined *Notepad function, which can serve as a repository of standardized
action diagram constructs that you can easily copy into the action diagrams of other
functions.

For more information on user-defined *Notepad functions, see Using NOTEPAD in the
chapter "Modifying Action Diagrams."

The EXCINTFUN is implemented as inline source code (or a macro function) within the
source code of the calling function. That is, whenever you make a call to this function
type, it is embedded in the source code of the calling function at the point where you
made the call.

You cannot attach an EXCINTFUN to an access path. When defining this function type
specify *NONE for the access path.

You might use the EXCINTFUN to perform a calculation routine that will be used
repeatedly within a function or several functions.

Try to encapsulate as much of each action diagram as possible in the EXCINTFUN rather
than in native code. This encourages functional normalization and improves
maintainability. In addition, it improves the time it takes to load the action diagram of
the referencing functions.

The following table shows the parameters available.

Parameters Usage Role Default Option

Any field Any - - 0]

The following table shows the function options available.

Options Default Value Other Values
Execution location w S

Generate as subroutine? N Y

Share subroutine M(YSHRSBR) N, Y

Chapter 3: Defining Functions 135

Function Types, Message Types, and Function Fields

Example

An example of EXCINTFUN could be in performing a calculation, such as working out a
percentage that you want to call several times in different functions. You could:

1. Define an EXCINTFUN, attached to a database file, with access path *NONE.

2. Define input parameters of the function, such as Number and Total and the output
parameters, such as Percentages.

3. Define actions required in the supplied action diagram.

EXCMSG Messade Function

The CA 2E Execute Message (EXCMSG) function allows a request message to be
executed by the calling function. A request message is generally a CL (control language)
command.

You enter the request string in the second-level text of the message function. The
command can be executed in the iSeries native environment.

The EXCMSG function is attached to a special CA 2E shipped system file called
*Messages.

To implement the EXCMSG function, you define an EXC type message function. Once
you define the command to execute, you insert a call to the EXCMSG function from a
user point within the action diagram of a calling function. The EXCMSG function is then
implemented as a call to a CL program supplied by CA 2E.

The following table shows the parameters available.

Parameter Usage Role Default Option
Return code B - Y R
Message id | - Y R
Message data | - Y R
Field to receive message text | - - 0

The following table shows other properties.

Options Default Value Other Values
Message severity 20 00-99
Second level text - System request

136 Building Applications

Function Types, Message Types, and Function Fields

The EXCMSG function is implemented by a call to a CL program. The default
environment is controlled by the model value YEXCENV, but can be overridden for
individual Execute Message functions. The text of the message can be tailored to the
environment.

It is not possible to use the i OS override commands: Override Database File (OVRDBF),
Override Display file (OVRDSPF), and Override Print File (OVRPRTF) with the EXCMSG
function because the resulting overrides are only in effect in the invocation level of the
implementing CA 2E CL program.

If you use the i OS commands OPNDBF and OPNQRYF as the request message text, you
must specify a value of TYPE(*PERM) for these commands in order to prevent the
closure of the file on return from the implementing CA 2E CL program.

You can invoke the i OS command prompt by pressing F4 after entering the command
string. Although CA 2E allows you to use message substitution data variables, (&1, &2),
within the string, i OS does not accept these values within the string. To overcome this
restriction replace the ampersand (&) symbol with an at (@) symbol.

Advantade of SBMJOB over Execute Message

Specifying EXCMSG

Alternatively, you can submit EXCEXTFUN, EXCUSRPGM, and PRTFIL functions for batch
execution from within an action diagram. This method has the following advantages:

m Numeric parameters can be passed

m The complexities of constructing the submit job command string are hidden

m References to submitted functions are visible by CA 2E impact analysis facilities.
For more information on submitting jobs from within an action diagram, see Building

Applications, Submitting Jobs Within an Action Diagram in the chapter, "Modifying
Action Diagrams."

To specify an EXCMSG function, define an EXC type message function:

1. At the Edit Message Function Details panel, type Z and press F7 to access second
level text.

The Edit Second Level Message Text panel appears.

2. Specify the name of the command to execute. If you are unsure of parameters, you
can prompt for the names by pressing F4.

Chapter 3: Defining Functions 137

Function Types, Message Types, and Function Fields

EXCUSRPGM User Function

Example

The Execute User Program (EXCUSRPGM) function allows you to specify the connection
to a user-written high-level language program that is called by CA 2E functions. You can
specify parameters on the call to this function. You can also submit an EXCUSRPGM
function for batch processing from within an action diagram.

You can attach the EXCUSRPGM function to any access path or you can specify *NONE
for the access path. You should normally attach the EXCUSRPGM function to a file
containing some or all of the function parameters.

You cannot specify Neither (N) type parameter for this function type; however, you may
specify Varying (VRY) role parameters. There is no *Return Code parameter for this
function type unless you explicitly define it.

There is no action diagram or device design associated with this function type.

When you create an EXCUSRPGM function, CA 2E assigns a source member name for
the program. You can override this to be the name of the HLL program that you want to
call. You need to do this if the program already exists and you are now defining it to the
model.

You should declare all the parameters required by your EXCUSRPGM function.
Parameters can be declared in the normal fashion using the Edit Function Parameters
panel. However, you should first determine the domain of the parameter fields in your
user-written program to ensure that they correspond to the parameters of your calling
function.

The EXCUSRPGM function can be used to call IBM supplied programs such as the
QDCXLATE program to translate a string.

The program translates a given string of a given length to uppercase using the
QSYSTRNTBL table. A system-supplied table carries out lowercase to uppercase

conversion.

The following table shows the parameters available.

Parameters Usage Role Default Option

Any field required by program 1/0/B -/VRY - (0]

The following table shows the function options available.

Options Default Value Other Values

Execution location W S

138 Building Applications

Function Types, Message Types, and Function Fields

Options Default Value Other Values
Generate error routine M(YERRRTN) Y, N
Overrides if submitted job * F

EXCUSRSRC User Function

The Execute User Source (EXCUSRSRC) function specifies either:

m User-written high-level language source code is to be included within the source
code generated by a calling function.

m Device language statements, for example, DDS that can be applied to a device
function to customize the associated device design.

For more information on device user source, see this module, in the chapter, "Modifying
Device Designs," Device User Source topic.

The HLL source code of the EXCUSRSRC function must be the same as that of the calling
function; that is, a function implemented in RPG can only call an EXCUSRSRC function
that is RPG.

You can attach the EXCUSRSRC function to any access path, or you can specify *NONE
for the access path. You should normally attach the EXCUSRSRC function to a file
containing some or all of the function parameters. If there are no suitable files, it may
be worth considering defining a dummy file using a Defined as relation.

For example:

FIL User source REF Defined as FIL User source REF

Overall User Source Considerations

You cannot specify Neither (N) type parameters for this function type. The following
table shows the allowed parameters.

Parameters Usage Role Default Option

Any field 1/0/B - - (o]

Chapter 3: Defining Functions 139

Function Types, Message Types, and Function Fields

No action diagram, device design, or function options are associated with this function
type.

Although the EXCUSRSRC function provides flexibility, for ease of maintenance, you
should use action diagram programming whenever possible.

The HLL source is held in the source member that CA 2E assigns. CA 2E provides a source
member name which you can override with the name of the source member that you
want to call. Change the source name at the Edit Function Details panel.

The source member must reside in the appropriate source file. The source file must be
in the library list of any job that generates source for CA 2E functions that call the
EXCUSRSRC function. The files are as follows:

m For RPG functions, the source member must reside in the file QRPGSRC.

m For COBOL functions, the source member must reside in the file QCBLSRC or
QLBLSRC.

Parameters must be passed in accordance with the instance code that you generate in

the EXCUSRSRC function. To define parameters for the user source:

m Define the EXCUSRSRC function and optionally attach it to an existing access path or
else specify *NONE for the access path.

m Type P next to the function from the Edit Functions panel and define the

parameters accordingly.

For more information on defining parameters, refer to this module, in the chapter,
"Modifying Function Parameters."

Substitution Variables

The following substitution variables let you embed source generation information into
user source that is then resolved into the actual values in the final program source. One
use of this feature is to define generic preprocessing programs.

Variable Name Description

*MBR Program source member name
*FILE Program source file name

*LIB Program source file library name
*TYPE Source type (*RPG/*COBOL)

140 Building Applications

Function Types, Message Types, and Function Fields

RPG Source Considerations

You can include all RPG specification types in the source member, except an H
specification. CA 2E sorts the different specification types into their appropriate
positions within a program:

m CA 2E codes the source in the normal order for RPG specifications, which is:

- H specification (obtained from model values YRPGHSP for RPG, YRP4HSP for
RPGIV Program, and YRP4HS2 for RPGIV Module)

- Fand K specifications
- E specifications

- | specifications

- Cspecifications

- O specifications

m CA 2E treats the first RPG calculation specifications, which are not part of a
subroutine, as the instance code. If there are repeated calls to an EXCUSRSRC
function, CA 2E generates the code on every call to the function at the point
indicated by the action diagram.

CA 2E automatically inserts any C-specifications that follow a subroutine, but are not
part of a subroutine, in the ZZINIT subroutine.

The order of specification is

m |nstance code C-specifications

m C-specifications for subroutines called by instance code

m |nitialization C-specifications

Parameter fields are only recognized in the factor one, factor two, and result positions
of the RPG calculation specifications that form part of the instance code.

Parameters must take the form #UMMMM where U is the parameter usage defined on
the function (I, O, or B), and MMMM is the mnemonic name (DDS name) of the formal
parameter. For example:

C #IORVL ADD #BLNVL #OTLVL

CA 2E checks usage of parameters within the instance code both for correspondence
with the formal parameter and for use within the user RPG code. For example if field
ORCD is alphanumeric, CA 2E would not allow the following:

Chapter 3: Defining Functions 141

Function Types, Message Types, and Function Fields

C Z-ADD ZERO #BORCD

The letter U is reserved as the initial letter for user-specified field names and subroutine
names in user-written source. If you use other prefixes, you may find they conflict with
CA 2E generated names in certain instances.

If your EXCUSRSRC function contains an ICOPY statement, ensure that the source
member to be copied does not contain a subroutine. CA 2E generates the EXCUSRSRC
code as a subroutine in your function. The ICOPY includes the other subroutine inside
the EXCUSRSRC subroutine. This causes compile errors as a subroutine cannot be
embedded in another subroutine.

If you use RPG indicators, you must ensure that they do not conflict with those used
elsewhere in the program. To ensure that your usage of indicators in user-written
source code does not conflict with the use made of them in CA 2E generated code, you
should save the current indicator values at the start of user-written code and restore
them at the end. For example, to save and restore indicators 21 to 40:

C MOVEA*IN, 21 UWIN 20 * Save

C

c ... user code.....

C

C MOVEAUWIN *IN,21 * Restore

142 Building Applications

Function Types, Message Types, and Function Fields

COBOL Source Considerations

You can include all COBOL statement types in the source member, except LINKAGE
SECTION code and additional PROCEDURE DIVISION USING statements. CA 2E places the
different divisions and sections in the user source in their appropriate positions within a
program.

You must begin the code for each division or section according to the standard COBOL
conventions. For example:

++++-A1 B.. ... 2 3
WORKING-STORAGE SECTION.
01 VAR-1 PIC 9999 COMP.
01 VAR-2 PIC 9999 COMP.

PROCEDURE DIVISION.
MOVE VAR-1 TO VAR-2
PERFORM ROUTINE
MOVE VAR-2 TO VAR-1

In the generated code, Relevant Area B code normally follows that code generated by
CA 2E from the user source function but do not assume it does. You will find that
FILE-SECTION entries, in particular, precede entries generated for other function types.
Code is thus considered to be divided by anything found in Area A.

CA 2E treats Area B code between a PROCEDURE DIVISION Area A statement (or the
beginning of the member) and the next Area A statement (or the end of the member if
sooner) as instance code. If there are repeated calls to an EXCUSRSRC function, CA 2E
generates this code on every call to the function, at the point indicated by the action
diagram. CA 2E includes all other code in the generated program only once, if it is a
section.

CA 2E does not actually incorporate the following Area A statements from user source
into the generated code because they are all present in the generated code already. If
they are specified in EXCUSRSRC code, they serve only to show where the subsequent
Area B statements (that is, all preceding next Area A statements or the end of the
member if sooner) should be placed:

Chapter 3: Defining Functions 143

Function Types, Message Types, and Function Fields

+++++-A1 B.. ... 2 3
IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
I-0 CONTROL.
DATA DIVISION.
FILE-SECTION.
WORKING-STORAGE-SECTION.

CA 2E decodes and places Area A statements as follows:

m SPECIAL-NAMES: Area A statements are decoded and the constituent SPECIAL
NAMES, if any, are placed in the correct place in the generated code. The actual
words SPECIAL NAMES are omitted, as they are already present in the generated
code.

m COMMITMENT CONTROL FOR: Area A statements are decoded and the constituent
file names placed in the correct place in the generated code. The actual words
COMMITMENT CONTROL FOR are placed in the generated code, unless they are
already present because of use of commitment control by another function.

m CA 2E assumes that a user source section headed USR-INIT. consists of code to be
placed in the ZZINIT (initialization) SECTION. The USR-INIT. heading is omitted from
the generated code.

m Sections in the user source that follow a DECLARATIVES Area A statement are
placed, with their Area A section headings, in the correct place in the generated
code. The actual words DECLARATIVES and END DECLARATIVES are placed in the
generated code, unless they are already there because of another function using
this COBOL facility.

m All other code sections, with their Area A headings, are placed in the generated
code following all non-user source generated sections.

If an EXCUSRSRC function contains code for more than one section, remember that
these sections are not consecutive within the host program; they are only required to be
syntactically correct within their own section or division. If you use the COBOL syntax
checker when editing user source, you may incur errors because the syntax checker
assumes that the code present in the source member constitutes a complete COBOL
program, and that the sections and divisions encountered are consecutive within the
source. Both these assumptions are false for the source of an EXCUSRSRC function.

The COBOL user source must be correct within the context of the source into which it is
inserted. If you are generating COBOL 85, it must follow COBOL 85 conventions; if you
are generating COBOL 74 it must follow COBOL 74 conventions. Keep these points in
mind:

m For COBOL 85, CA 2E generated code contains explicit scope terminators such as
END-IF and END-PERFORM. Within inline code, you must use scope terminators
rather than full stops. In code that is part of another division or section and
contextually independent, either full stops or scope terminators can be used.

144 Building Applications

Function Types, Message Types, and Function Fields

m Because explicit scope terminators are not available in COBOL 74, you cannot use
them in EXCUSRSRC functions.

You can include an EXCUSRSRC function written in COBOL 74 within a function
generated in COBOL 85, provided the COBOL 74 code does not include any language
elements that are invalid in COBOL 85. First copy the COBOL 74 source to the COBOL 85
source file (QLBLSRC) and do one of the following:

m Convert the source according to the previous conventions. This means replacing
appropriate full stops with scope terminators.

m Enclose the EXCUSRSRC function call within an action diagram sequence construct
(IS - insert sequence) so that it is implemented as a contextually independent
subroutine.

You can place parameter fields at any point in the instance code. You cannot split them
across a source record boundary. Parameters must be of the form
USR-PARM-U-MMMM where U is the parameter usage defined in the function (I, O or B)
and MMMM is the mnemonic name (DDS name) of the formal parameter. For example:

++++-A1 B.. ... 2 3
ADD USR-PARM-I-ORVL TO USR-PARM-B-
LNVL
GIVING USR-PARM-0-TLVL
END-ADD

CA 2E checks the usage of parameters within the instance code, the U part of the name,
for correspondence with the formal parameter. The letter U is reserved as the initial
letter for user-specified field and section names in user-written source. If you use other
prefixes, you may find they conflict with CA 2E generated names in certain instances. If
you use COBOL indicators, you must ensure that they do not conflict with those used
elsewhere in the program.

EXCUSRSRC Function Example

Say you want to define a user-written HLL function called Get customer credit limit into
another CA 2E standard function. The EXCUSRSRC function has three parameters:

10B Parameter GEN Name
I Customer code Ccucb
I Trial value TRQT
(0] Trial limit TRLM

Chapter 3: Defining Functions 145

Function Types, Message Types, and Function Fields

To specify this function you might do the following:

1. Define the three-parameter fields as fields using the Define Objects panel.

2. Define an EXCUSRSRC function using the Edit Functions panel. The function can be
attached to any file with an access path value of *NONE.

3. Specify the three parameters for the EXCUSRSRC function using the Edit Function
Parameters panel.

4. From the Edit Function Details panel for the EXCUSRSRC function, change the
program name for the function to the name of the source member containing the
user-written code.

5. Code the EXCUSRSRC function in the nominated source member.

Refer to the following examples of RPG and COBOL and then proceed to Step 6.
The following example shows RPG EXCUSRSRC.
** Get customer credit limit) <- IGNORED
** Company : Universal Sprocket Co)
** System : Widget processing system)
** Author : YOU)
FUUCUCRLOIF E K DISK) <- OTHER SPECIFICATIONS
* Customer credit limits)
* Set up parameters) <- INSTANCE CODE
C MOVE #ICUCD UACUNB)
C Z-ADD#ITRQT UATRQT)
C EXSR UACRLM)
C Z-ADDUACRLM #0TRLM)
CSR UACRLM BEGSR) <- SUBROUTINE
*)
* Get credit limit)
*)
C MOVEA*IN,60 UWIN 1) *Save
* Set of record error indicators.)
C UACUNB CHAIN @ CUCRQQ 60)
C *INGO IFEQ 'O’)
C UATRQT ADD QQCRLM UACRLM)
C END)
C MOVEA UWIN *IN, 60) *Restore
*)
CSR UAEXIT ENDSR)
* Initialization for credit test)
*)
C Z-ADD*ZERO UACRLM) <- ZZINIT code
*)
The following example shows COBOL EXCUSRSRC.

146 Building Applications

Function Types, Message Types, and Function Fields

+++++ -A1B 2 3
** Get customer credit limit
** Company : Universal Sprocket Co
** System : Widget processing system
** Author : FRED

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT UUCUCRLO
ASSIGN TO DATABASE-CBABREL1
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS EXTERNALLY-DESCRIBED-KEY
FILE STATUS is FILE-STATUS.
* Customer credit limits
FILE-SECTION.
FD UUCUCRLO
LABEL RECORDS ARE STANDARD.
01 UUCUCRLO-F.
COPY DDS-ALL-FORMATS OF UUCUCRLO.

WORKING-STORAGE SECTION.
01 UWIN PIC X.

PROCEDURE -DIVISION.

* Set up parameters

MOVE USR-PARM-I-CUCD TO UACUNB OF YCUCRQQ
MOVE USR-PARM-I-TRQT TO UATRQT OF YCUCRQQ
PERFORM UACRLM

MOVE UACRLM OF YCUCRQQ TO USR-PARM-0-TRLM

* Get credit limit
UACRLM SECTION.
MOVE IND(60) TO UWIN
* Set of record error indicators.
READ UUCUCRLO
FORMAT IS ‘YCUCRQQ'

END-READ
IF C-NO-RECORD

MOVE C-IND-ON TO IND(60)
ELSE

MOVE C-IND-OFF TO IND(60)
END-IF

IF IND(60) = C-IND-ON
ADD UATRQT OF YCUCRQQ, QQCRLM
GIVING UACRLM OF YCUCRQQ
END-ADD
END-IF

<- IGNORED

<- OTHER
SPECIFICATIONS

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

) <- NEW VARIABLES

<- INSTANCE CODE

—_—— — — — —

<- SUBROUTINE

— — — — — — — — — — — —

—_—— — — ~—

In the action diagram of the function from which you want to call the Get customer

credit limit function, insert an action:

> USER: User defined action

Get customer credit limit *

<<<

Chapter 3: Defining Functions 147

Function Types, Message Types, and Function Fields

Supply the required parameters for the action using the Edit Action Details panel.

For example:
EDIT ACTION DIAGRAM Edit SYMDL Order Detail
FIND=> Credit chk
I(C. 1. 8)F=Insert GO i i it at i et ime e ime s cmecmaeamacamae s
I(AE.Q.=.+,-.=.=A) : EDIT ACTION - FUNCTION NAME H
_ EDIT ACTION - FUNCTIOW DETAILS
F : Function file : Order
— : Function. . . : Get customer credit limit
: Obj
: I0B Parameter Use Typ Ctx Object Name
I Customer code FLD DTL. Customer code
I Trial Value FLD DTL Order walue
0 Trial Limt FLD DIL Customer credit limat
: F3=Ezit F9=Edit parameters FI10=Default parms FIlZ2=-Previous
F3=Prev block FS=User points F6=Cancel pending moves FZ3i=More options
F¥=Find F8=Bookmark F9=Parameters FZ4=More keys

The following table shows an example of the code generated for the call. These are the
names of the values passed to the parameters.

IOB Parameter GEN Name Variable GEN Name
I Customer code CucCD Customer code CucCD
I Trial value TRQT Order value ORQT
(0] Trial limit TRLM Customer credit limit CULM

148 Building Applications

Function Types, Message Types, and Function Fields

CA 2E generates the following RPG and COBOL code for the particular call:

UAEXIT.)
EXIT.)

* ZZINIT code.

USR-INIT SECTION.) < - ZZINIT CODE
MOVE ZEROES TO UACRLM OF YCUCRQQ)

The following example shows EXCUSRSRC - RPG call.

* Get customer credit details
* Set up parameters

C MOVE # 1CUCD UACUNB
C Z-ADD #20RQT UATRQT
C EXSR UACRLM

C Z-ADDUACRLM #1CULM

The following example shows EXCUSRSRC - COBOL Call.

+++ -A1B.. ... 2 3
* Get customer credit details
* Set up parameters
MOVE Z1CUCD OF ZSFLRCD-WS-0 TO UACUNB OF YCUCRQQ
MOVE Z20RQT OF ZSFLCTL-WS-0 TO UATRQT OF YCUCRQQ
PERFORM UACRLM
MOVE UACULM OF YCUCRQQ TO Z1CULM OF ZSFLRCD-WS-0

CA 2E includes the other source code statements for the EXCUSRSRC function into the
source of the calling function without modification.

Chapter 3: Defining Functions 149

Function Types, Message Types, and Function Fields

MAX Function Field

Examples

MAX (maximum) is a special type of field usage that is assigned to function fields
containing the result of a computation of the highest value for a particular field.

The MAX field usage uses a special built-in routine that computes the value of the
function field based on the input parameter. For instance, within an Edit Transactions
function type, you could define a MAX function field on the header record file to
calculate the highest value of orders that appear in the detail file. You must define the
input and result parameters associated with the MAX function field. The MAX function
field would calculate the resultant value on initialization and call to the function.

MAX function fields have two, and only two, parameters:

m Aresult parameter—This is the MAX function field itself. You must place this field
on the totaling format of any function (Display Transactions or Edit Transactions)
that calls the MAX function field.

® An input parameter—This specifies the field for which MAX determines the highest

value. This field must be present on the detail record format of the calling function.

Function fields of usage MAX must always be numeric. If the function field is defined as
a referenced (REF) field based on another numeric field, CA 2E assumes that the
based-on field is the field whose maximum value is calculated.

The following are usage examples of the MAX function field:
m largest order item: maximum of order quantity

m Highest line number: maximum of line number

150 Building Applications

Function Types, Message Types, and Function Fields

Function Field

Example

MINMIN (minimum) is a special type of field usage assigned to the function fields
containing the result of a computation of the lowest value for a particular field.

The MIN field usage uses a special built-in routine that computes the value of the
function field based on the input parameter. For instance, within an Edit Transactions
function type, you define a MIN function field on the header record file to calculate the
lowest value of orders appearing in the detail file. You must define the input and result
parameters associated with the MIN function field. The MIN function field calculates the
resultant value on initialization and call to the function.

MIN function fields have two, and only two, parameters:

m A result parameter—This is the summed MIN function field itself. You must place
this field on the totaling format of any CA 2E function (Display Transactions or Edit
Transactions) that calls the MIN function field.

® An input parameter—This specifies the field for which MIN determines the lowest

value. This field must be present on the detail record format of the calling function.

Function fields of usage MIN must always be numeric. If the function field is defined as a
referenced (REF) field based on another numeric field, CA 2E assumes that the based-on
field is the field whose minimum value is calculated.

The following are usage examples of the MIN function field:
m Smallest order item: minimum of order quantity

m Lowest line number

Chapter 3: Defining Functions 151

Function Types, Message Types, and Function Fields

MTRCD Device Function

PThe Prompt Record (PMTRCD) function defines a program to prompt for a list of fields
defined by a specified access path. You can pass the validated fields as parameters to
any other function whether it is interactive, batch, a user-defined function to print a
report, or an i OS message function such as Execute Message.

There is no default action for this function type. If you want to call another function
once you validate the PMTRCD fields, you must specify this in the action diagram.

The fields that appear, by default, on PMTRCD are based on the file/access path over
which the function is built. You can drop all panel format relations and fields and use
your own function fields and subsequent validation on the function as an alternative to
validating fields with file relations.

You can attach a PMTRCD function to a Retrieval (RTV) or a Resequence (RSQ) access
path. There is no update processing for this function unless you specifically include it in
the action diagram. A Prompt Record function does not validate the existence of a
particular record from the underlying access path. It will, however, validate panel level
relations and date and time fields.

The PMTRCD function executes in *ENTER mode only and there is only one display panel
for this function.

The following table shows the parameters available.

Parameters Usage Role Default Option
Return code B - Y R
Fields from access path Any -/MAP - 0]
Any other fields Any -/MAP - 0]

The following table shows the function options.

Options Default Value Other Values

Repeat prompt N Y

Confirm prompt Y N

Confirm initial value M(YCNFVAL) Y, N

Send all error messages M(YSNDMSG) Y, N

If action bar, what type? M(YABRNPT) A D

Commit control N(*NONE) M(*MASTER), S(*SLAVE)

152 Building Applications

Function Types, Message Types, and Function Fields

Options Default Value Other Values
Generate error routine M(YERRRTN) Y, N

Reclaim resources N Y

Closedown program Y N

Copy back messages M(YCPYMSG) Y, N
Generation mode A D,S, M
Screen text constants M(YPMTGEN) LI

Generate help M(YGENHLP) Y,N,0

Help type for NPT M(YNPTHLP) T,U
Workstation M(YWSNGEN) N(NPT), G(GUI), J(JAVA),
implementation V(VB)
Distribute a file I/O Control M(YDSTFIO) S,U,N

For more information on function options, see the chapter, "Setting Default Options for

Your Functions."

The following is an example of Prompt and Record panel.

=PROGRAM =PGHMOD

Customer code
Customer name
Customer address
Customer city
Customer state
Customer country
Customer postal code . .
Customer phone number

Customer status R

Customer credit limit

F3=Ez1t FA=Prompt

Prompt Customer.

DD/MM~YY HH:MM:55

For more information on user points, see the chapter, "Modifying Action Diagrams."

Chapter 3: Defining Functions 153

Function Types, Message Types, and Function Fields

PRTFIL Device Function

The Print File (PRTFIL) function defines a program to print the records from a specified
access path. The PRTFIL function prints all records in a single file hierarchy of the
based-on access path and provides header and total formats for key fields. You can
submit a PRTFIL function for batch processing from with an action diagram.

Most considerations that affect PRTFIL also affect Print Object (PRTOBJ).
Default Processing

The following describes default processing:
®m You can specify up to 24 levels of totaling.

®m You can print records from more than one access path by embedding Print Object
functions within this function type. You can view the overall structure of the report
in the Edit Device Structure panel.

®m You can attach a PRTFIL function to a Retrieval (RTV), a Resequence (RSQ), or a
Query (QRY) access path. The Query access path allows you to specify virtuals as
key fields. You can omit certain records from printing by setting the *Record
Selected Program field to No.

Device Considerations

The following are device considerations:

m The default design for a PRTFIL function includes standard header, top of page, first
page, detail final totals, and footer formats.

m [fthere is more than one key field, CA 2E creates a header and total format for each
additional key level. By using the Edit Report Formats panel, you can drop
unwanted formats except detail standard header/footer formats.

m The formats belonging to any embedded PRTOBIJ functions are present on the
PRTFIL device design; however, you cannot alter them. You can only specify the
indentation level of the embedded PRTOBJ formats within the report structure.

154 Building Applications

Function Types, Message Types, and Function Fields

Parameter Considerations

Effect of restrictor parameters:

m If you furnish all the keys of the access path to which a PRTFIL function attaches as
restrictor parameters to the function, only the record with the given key or keys
prints.

m [f you furnish only some of the keys (such as the major keys) as restrictor
parameters, all of the records with the given key print.

m [f you furnish none of the keys of the access path as restrictor parameters, all of the
records on the access path print.

Effect of positioner parameters:

m If you furnish all of the keys of the access path to which a PRTFIL function attaches
as positioner parameters to the function, only the records with a key value greater
than or equal to the given key or keys print.

m |f you furnish only some of the keys (such as the major keys) as restrictor
parameters, but some or all of the remaining keys are passed as positioner values,
only those records with keys equal to the restrictor values and greater than or equal
to the positioner values print.

= [f none of the keys of the access path are supplied as positioner parameters, all of
the records in the access path within the specified restrictor group print.

Level breaks:

m CA 2E defines a level break whenever a major key value changes.

®m On a level break, the Print File resets the fields in the associated controlling Header
format and its associated Total format. The fields are reset to blank, zero, or values
from the DB1 context as appropriate. The total number of formats for the PRTOBJs
and PRTFILs cannot exceed 104 if generated in RPG and 96 if generated in COBOL.

®m You can remove a level break and the associated processing by dropping the
associated header and total formats. Totals automatically accumulate at the higher
levels.

m |f you hide the formats, the processing remains in the execution but the output is
suppressed from the report.

® You can add a maximum of 24 PRTOBJ functions to one PRTFIL function.

The following table shows the parameters available.

Parameters Usage Role Default Option
Return code B - Y R
Key fields I RST/POS - (0]

Chapter 3: Defining Functions 155

Function Types, Message Types, and Function Fields

Parameters Usage Role Default Option

Other fields Any /MAP - 0

The following table shows the function options available.

Options Default Value Other Values
Send all error messages M(YSNDMSG) Y, N

Commit control N(*NONE) M(*MASTER), S(*SLAVE)
Generate error routine M(YERRRTN) Y,N

Reclaim resources N Y

Closedown program Y N

Copy back messages M(YCPYMSG) Y, N
Generation mode A D,S, M
Screen text constants M(YPMTGEN) L1

Overrides if submitted job * N

Distributed file I/O ControL M(YDSTFIO) S,U,N

156 Building Applications

Function Types, Message Types, and Function Fields

For more information on function options, see the chapter, "Setting Default Option for

Your Functions."

The following is an example of a Print File.
Top of page format
First page format

| Second level key header
|

Standard report header

Top level key header

ﬂﬂ#ﬂﬂﬂ 00000000000
00omo
0000000

Eey field one: 0000

Eey field two: 0000000

Fey field Field name Field
three name:
oooooooon oooooooooo ooaoo

Fey field two: 0000000

A
Fey field one: 0000
Final teotals

==FND OF REPORT==

'
0000000000000D0000D0 oo

Virtual field: 00000000000000000

Field name

0000000000

Virtual field: 00000000000000000

Virtual field: 000

Field name

0000000000

Virtual field: 00O

Final totals Second level key totals

End of report (constant)

Top level key totals

For more information on user points, see the chapter, "Modifying Action Diagrams."

Chapter 3: Defining Functions 157

Function Types, Message Types, and Function Fields

PRTOBJ Device Function

The Print Object (PRTOBIJ) function defines an embedded report that prints the records
from a specified access path at any point within a PRTFIL function. You also can embed
PRTOBIJ functions within other PRTOBJ functions.

A PRTOBIJ function is an internal function, much like the EXCINTFUN, RTVOBJ, CHGOBJ,
or (DLTOBYJ) functions, in that the high level language source code generated to
implement the function is included as source code within the Print File function that
calls it.

You can attach a PRTOBJ function to a Retrieval (RTV), a Resequence (RSQ), or a Query
(QRY) access path.

Most considerations that affect PRTFIL also affect PRTOBJ.

Device considerations:

m The default device design for a PRTOBJ report design includes first page, detail, and
final total formats. The standard header and footer formats and the external
features of the report (for example, page size, compiler overrides) are determined
by the embedding PRTFIL function.

m [fthere is more than one key field, CA 2E creates header and total formats for each
additional key level. You can drop unwanted formats using the Edit Report Formats
panel.

Default logic:

m The PRTOBIJ function reads one, several, or many records according to the entry
parameters that you specify for it. The same parameter considerations that apply to
PRTFIL functions also apply to this function type.

®m You can specify totaling with a PRTOBIJ function in the same way as for PRTFIL
function types (from the CUR context to the NXT context). If you want to return a
total to the calling function, you must return it as a parameter

The following table shows the parameters available.

Parameters Usage Role Default Option
Return code I RST/POS - 0]
Other fields Any -/MAP - 0

158 Building Applications

Function Types, Message Types, and Function Fields

There are no function options available for this function.

The following is an example of a Print Object.

Second level key header Top level key header

Fey field one: 000D lVirtual field:

Fey field two: 0000000

Key field Field name Field
three name
000000000 0000000000 ooooo

Fey field two: 0000000
A

Fey field one: 0000

Final totals

T

000000000000000

Virtual field: 00000000000000000

Y

¥irtual field: 000

Field name Field name

0000000000 00000000000

¥irtual field: 000

|
Final totals

RTVMSG Messagde Function

Specifying RTVMSG

Second level key totals

Tof) level key totals

The Retrieve Message (RTVMSG) function specifies a process that retrieves message
text. You can then use the message text to perform any number of processes such as
moving a character string (or strings) from a database file into a field. You could also
concatenate two discrete character strings from different fields and place them in the
same work field or some other text field in another file.

The RTVMSG function is attached to a special CA 2E system file called *Messages.

Default logic:

CA 2E implements the RTVMSG function via a high-level language program call to a

CL program (Y2RVMGC).

The RTVMSG function returns a message to the calling program (that is, the
program that called the RTVMSG function). You would have to declare the field that
is to receive the returned message data as an output parameter to the RTVMSG

function.

To specify a RTVMSG function, define a RTV type message function. Go to the Edit

Message Function Details panel (type Z). On the message text prompt, specify the
specific text along with system parameters that are derived as part of the text string.

Chapter 3: Defining Functions 159

Function Types, Message Types, and Function Fields

RTVOBJ Database Function

The Retrieve Object (RTVOBJ) function specifies a routine to retrieve one or more
records from a database file. Processing can be specified for each record read, by
modifying the action diagram for the function.

The RTVOBI function attaches to a Retrieval (RTV), Resequence (RSQ), or Query (QRY)
access path, or Physical (PHY). The QRY access path lets you specify virtuals as key fields.
There are no function options or device designs available for RTVOBI.

Note: For more information on PHY, see the section Internal Database Functions and
PHY Access Paths.

The RTVOBI function reads one, all, or a selection of the records or array entries
according to the specified entry parameters.

If you need data to be returned from the RTVOBJ to the calling function, you must
perform moves within the RTVOBJ user points. The best way to implement this is to use
*MOVE ALL from a DB1 context to a PAR context if the record is found. The fields to be
passed back to the calling function must be specified as output parameters on the
RTVOBI.

Note: *MOVE ALL only performs moves for fields with matching names.

The following table shows the parameters available.

Parameters Usage Role Default Option
Key fields from access path | RST/POS Y R
Other fields Any - - (0]

The following table shows the function options available.

Options Default Value Other Values

Share Subroutine M(YSHRSBR) N, Y

Effects of Restrictor Parameters

If all the keys of the access path to which a RTVOBIJ function attaches are supplied as
restrictor parameters, only the record with the given key or keys is read.

If only some of the keys (major keys) are supplied as restrictor parameters, all of the
records with the given key are read.

If none of the keys for the access path are supplied as restrictor parameters, all of the
records in the access path are read.

160 Building Applications

Function Types, Message Types, and Function Fields

Effects of Positioner Parameters

If all the keys of the access path to which the RTVOBIJ function attaches are supplied as
positioner parameters to the function, only the records with a key value greater than or
equal to the given key or keys are read.

If only some of the keys (major keys) are supplied as restrictor parameters, but some or
all of the remaining keys are passed as positioner values, only those records with keys
equal to the restrictor values and greater than or equal to the positioner values are
read.

If none of the keys of the access path are supplied as positioner parameters, all of the
records in the access path within the specified restrictor group are read.

For more information on user points, see the chapter, "Modifying Action Diagrams."
Effects of No Parameters
If no keys of the access path are supplied as parameters, there are two possible

outcomes:

m All records in the access path are read if the USER: Process Data Record user point
contains user logic.

m Only the first record is read if the USER: Process Data Record user point does not
contain user logic.

SELRCD Device Function

The Select Record (SELRCD) function defines a program to display the records from a
specified file using a subfile. The program enables the end user to select one of the
records and the key of the selected record is returned to the calling program.

For each field on the based-on access path, an associated input-capable field is present
on the subfile control record. You can use these fields to control how records from the
database are displayed. There are three types:

m Restrictor parameters for the subfile (protected key fields).
m Positioner parameters for the subfile (unprotected key fields).

m Selectors (non-key fields). You can specify the operation (Equal to, Contains,
Greater than) by which the selection is made, using the Edit Screen Entry Details
panel.

Chapter 3: Defining Functions 161

Function Types, Message Types, and Function Fields

The SELRCD function type differs from the Display File function type. Records are
similarly displayed as a list or subfile, but the SELRCD function includes processing to
return the key values to the panel of the calling function whenever you select an item
with a line selection option of 1 (CUA Entry) or / (CUA Text) action bar.

You can attach a SELRCD function to a Retrieval (RTV), Resequence (RSQ), or Query
(QRY) access path. The QRY access path lets you specify virtuals as key fields.

Effect of parameters:

If you define a partially restricted key to a SELRCD function, the SELRCD function
displays a subset of the total number of records. If you do not restrict the keys, you can
use them to position the subfile display. To do this, enter the character string required
to position the display after the ? in the relevant code field.

Design considerations:

The SELRCD function executes in *SELECT mode only. There is only one display panel for
this function type. There is no default update processing for this function.

When you type a ? or user prompt (F4) for a key or foreign key field, CA 2E calls the
prompt function assigned to this file-to-file relation. The SELRCD function based on the
access path used to validate the value entered becomes the default prompt function.

CA 2E determines the appropriate default prompt function to call for a key or foreign
key field as follows:

1. Determine the referencing access path of the relation associated with the field. By
default, this is the primary Retrieval access path of the referencing file.

2. Select, by name, the first SELRCD built over that access path.

3. If no SELRCD is found, no call is generated.

The F4 prompt function assignment enables you to select another function to override
the function assigned to the access path relationship. This assignment can be made at
the access path or function level. You can select any external function except Print File
and the function can be based over any access path that is valid for the function type
you select. Function level assignments take precedence over access path level
assighments.

For more information on instructions for assigning F4 prompt functions, see Editing
Device Designs and Building Access Paths in the chapter "Modifying Device Designs,"

and Changing a Referenced Access Path in the chapter "Modifying Access Paths."

The following table shows the parameters available.

Parameters Usage Role Default Option

Return code B - Y R

162 Building Applications

Function Types, Message Types, and Function Fields

Parameters Usage Role Default Option
Key fields B MAP Y R
Other fields B RST - 0]
non-key fields I MAP - 0]
Other fields Any -/MAP - 0

If there are output or both parameters, these are passed back automatically if the fields
are present in the subfile record.

The following table shows the function options available.

Options Default Value Other Values

Subfile end M(YSFLEND) P, T

Send all error messages M(YSNDMSG) Y, N

If action bar, what type? M(YABRNPT) A, D

Commit control N(*NONE) M(*MASTER), S(*SLAVE)
Generate error routine M(YERRRTN) Y, N

Reclaim resources N Y

Closedown program Y N

Copy back messages M(YCPYMSG) Y,N

Generation mode A D,S, M

Screen text constants M(YPMTGEN) L1

Generate help M(YGENHLP) Y,N, O

Help type for NPT M(YNPTHLP) T, U

Workstation M(YWSNGEN) N(NPT), G(GUI), J(JAVA), V(VB)
implementation

Distributed file 1/0O Control M(YDSTFIO) S,U,N

Chapter 3: Defining Functions 163

Function Types, Message Types, and Function Fields

For more information on function options, see the chapter, "Setting Default Options for
Your Functions."

The following is an example of a SELRCD.

: Select Order
: Order
1 code

: Type options, press Enter.

1 i=5elect
: Dpt Order Customer Customer name Employee nane
code code

000000 Dacooo 00000080000000600000 000000C000000000000000000
000C00 000000 000000400000006C00080 080000C00000000C00C000000
000C00 000000 00000000000000CC0000 000000C00000000C000000000
000000 000J00 Q000000000a0006C0000 0O0000C000V000CCO0CR0000N0
000000 000000 00000000000000CC0000 00000GC000000000000000000
000000 000O00 (000004800000000C0000 DJ00D0C00000000C000H00000
000C00 000000 00000000000000600000 00000GC00000000000000000 +

: F3=Exit F4=Prompt

For more information on user points, see the chapter "Modifying Action Diagrams."

SNDCMPMSG Messagde Function

The Send Completion Message (SNDCMPMSG) function specifies that a completion
message is sent to the function that called a function. A completion message indicates
completion of a particular task.

The SNDCMPMSG function causes a message to be returned to the message queue of
the program that occupies the previous higher position in the invocation stack of the
program that invokes the SNDCMPMSG function.

Message
function

— | Function

SNDCMPMSG

f 1

164 Building Applications

Function Types, Message Types, and Function Fields

Example

The SNDCMPMSG function is attached to a special CA 2E system file called *Messages.

CA 2E implements the SNDCMPMSG function using a shipped user program called
Y2SNMGC.

In this example, you have a Display File function that calls a separate Print File function
to print out some details. You might then send a completion message from the Print File
function to indicate that the print is complete. This could be done by modifying the
action diagram of the Print File function as follows:

> USER: Process end of report

:Send completion message - 'Print of details complete' <<<

The message then appears automatically on the message subfile of the Display File
function.

SNDERRMSG Messade Function

The CA 2E Send Error Message (SNDERRMSG) function is used to send an error message
to the message queue of the calling program. An error message indicates that an error
occurred arising from validation of user-entered data.

The SNDERRMSG function causes a message to be sent to the program message queue
of the program that calls the SNDERRMSG function. All standard functions have message
gueue subfiles and display messages at the bottom of the panel.

Message

Function .
function

+—SNDCMPMSG—

Chapter 3: Defining Functions 165

Function Types, Message Types, and Function Fields

The SNDERRMSG function is attached to a CA 2E shipped file called *Messages.

When you call a SNDERRMSG function, you can use any input-capable fields that you
defined as input parameters, as message substitution data. These parameter fields do
not need to appear in the text of the message.

When you call a SNDERRMSG function, input-capable fields on your function’s device
design, which you defined as Input or Neither parameters to the SNDERRMSG function,
appear highlighted and in reverse image unless Flag Error is set to N on the Edit Function
Parameter Details panel for the device function. The cursor is positioned at the first
error field, unless overridden by the *SET CURSOR function. The program does not
proceed past the validation subroutine until you correct the error.

When you call a SNDERRMSG function, the program encounters more than one error, all
input-capable fields in error are highlighted. Depending on what you specified for the
function option Send All Error Message, the program sends only the first error or all
errors.

Consider the following example. If you have a device function that requires a calculated
total value to be checked against an entered total value, and an error message sent if
these totals do not agree, you would do this by:

Defining an error message.

Modifying the action diagram of the device function to call the SNDERRMSG
function in the appropriate circumstances as shown next.

> USER: Validate totals

.-CASE <<
| -CTL. Calculated total NE CTL. Entered total <<
| Send error message - do not agree' <<<
' -ENDCASE

The device function repeatedly redisplays the fields until the error is corrected.

166 Building Applications

Function Types, Message Types, and Function Fields

SNDINFMSG Messade Function

The Send Information Message (SNDINFMSG) function is used to send an information
message to the message queue of the calling program. An information message informs
or provides information concerning a particular task.

The SNDINFMSG function causes a message to be sent to the program message queue
of the program that invokes the SNDINFMSG function.

HLL ™| Message

program i
«— SNDINFMSG—] eto"

The SNDINFMSG function is attached to a CA 2E shipped file called *Messages.

Consider the following example. If you have a CA 2E device function that calculates a
control total as part of the validation and the calculated total value differs from an
entered total value, you may want to send an information message as a warning that
the end user can choose to ignore.

To do this, you first define an information message in the normal way and modify the
action diagram of the device function as follows:

> USER: Validate totals

: .CASE <<<

: | -CTL. Calculated total NE CTL. Entered total <<

N Send information message - 'Totals disagree' <<<
'ENDCASE

’

Chapter 3: Defining Functions 167

Function Types, Message Types, and Function Fields

SNDSTSMSG Message Function

Example

The Send Status Message (SNDSTSMSG) function is used to send a status message to the
message queue of a calling function. A status message provides information concerning
the progress of a long-running task.

The SNDSTSMSG function causes a message to be returned to the program message
queue of the job that invokes the SNDSTSMSG function. The SNDSTSMSG function type
is only valid for interactive jobs and causes the message to display at the base of the
panel during a long-running interactive job.

The SNDSTSMSG function is attached to a CA 2E shipped file called *Messages.

You might have a function to execute End of Year processing that is a long-running
process. Before starting the main body of the function, you could send a status message
to indicate that it is in progress; for example:

> USER:

: Send status message - 'End of year processing running' <<<

SUM Function Field

The Sum function field is a special field usage used within functions to contain the result
of a computation of the sum of values of another field.

Function fields of type SUM must be numeric. If the function field is defined as a
reference (REF) field that is based on another field, the SUM field contains a summation
of the values of the referenced field. The referenced field must also be numeric.

Function fields of type SUM always have two parameters:

m Aresult parameter: This is the actual field itself containing the results of a
summation. You must place the field on a totaling format or subfile control format
of the Display or Edit Transaction that calls the SUM function field.

® Aninput parameter: This is the field whose sum will be calculated. This field must
exist on the detail format of the function using the SUM function field.

The following are examples of Sum fields:

m Total order value: the sum of order lines

m Total warehouse space: sum of location space

168 Building Applications

Function Types, Message Types, and Function Fields

USR Function Field

Default Prototype

The USR (User) field usage is reserved for any work fields that you need on a device
design or in an action diagram. A USR function field can be input-capable or output only.
USR function fields are usually defined as REF fields to existing database fields.

There is no default processing for USR function fields. You must initialize, validate, or
specify any special processing for the field. However, CA 2E performs basic field type
validation such as date validation if the field is a DTE type field.

The following are examples of User fields:
m Command request strings

® Menu options

m Work fields used on the panels or in the function’s action diagrams

Functions

The Default prototype function is available for *Template functions. It is available only
for functions created over the *Template file and is available for all function types
(CHGOBI, EDTFIL, and so on). This function facilitates the use of *Template functions.
When new functions are created, the use of a specific *Template function is enforced.

Note: In previous versions, users had to select *Template functions (by using F21)
explicitly while creating new functions. There was no enforcement of *Template usage.

If a function x based on the *Template file that has the Default prototype function
function option set to Y, then any function of x type subsequently created over any
user-defined (non-system) file in the model automatically uses function x as their
prototype, rather than using the system default.

Note: New functions created over the *Template file always use the system default at
the time of creation.

For all functions based over the *Template file, only one function of each type can have
the Default prototype function function option set to Y. Any user with DSNR authority
can change the Default prototype function option.

Chapter 3: Defining Functions 169

Chapter 4: ILE Programming

2E supports ILE programming in the form of 2 HLL codes, RP4 and CBI. Functions using
the RP4 HLL code have code generated by the RPGIV generator; CBI functions generate
CBL ILE code using the standard shipped COBOL generator

This section contains the following topics:

Choosing RPGIV as the Default Language (see page 171)
ILE Features That Affect CA (see page 172)

Generating RPGIV Source (see page 175)

Compiling RPGIV Source (see page 175)

RPGIV User Source (see page 177)

Model Value YRP4SGN (see page 179)

RPGIV Generator Notes (see page 180)

Service Program Design and Generation (see page 180)
The YBNDDIR Model Value (see page 189)

Choosing RPGIV as the Default Lanquagde

To create a new model with RPGIV as the default language, use the YCRTMDLLIB
command as follows:

YCRTMDLLIB..HLLGEN (*RPGIV)

This value becomes the model value YHLLGEN. In addition, the default binding directory
YBNDDIR is created in the generation library.

To make RPGIV the HLL generator for an existing function, change the value on the Edit
Function Details panel to RP4.

Chapter 4: ILE Programming 171

ILE Features That Affect CA

ILE Features That Affect CA

The IBM integrated Language Environment (ILE) includes many enhancements and
changes over the Original Program Model (OPM) that controls and supports RPG and
COBOL programs.

This section contains brief descriptions of the ILE features that the CA 2E RPGIV ILE
generator uses for program creation and program calling.

Note: The RPGIV generator includes processing that can use such ILE features as bound
(static) calls, activation groups, binding directories, and more. These features provide
functionality that is not available for RPG or COBOL programs. A full understanding of
ILE is therefore necessary for using the RPGIV generator. See the documentation from
IBM or another source.

172 Building Applications

ILE Features That Affect CA

Program Creation

In OPM, program creation consists of compiling source code into runnable program
objects (*PGM). A program object is created from a single source member using the
Create RPG Program command (CRTRPGPGM).

By contrast, in ILE, program creation consists of:
m Compiling source code into nonrunnable module objects (*MODULE)

m Binding (combining) one or more modules into a runnable program object (*PGM)

One way to create an RPGIV program object is the same way you create an RPG
program in the OPM framework: using the CRTBNDRPG command. This command
creates a temporary module that is bound into a program object and later deleted. This
is the quickest and simplest way to create an ILE program.

Another way to create an RPGIV program object is using separate commands for
compilation and binding. In this two-step process, you create a module object with the
Create RPG Module command (CRTRPGMOD). This command compiles the source
statements into a nonrunnable module object, which must be bound into a program
object with the Create Program command (CRTPGM).

ILE also lets you bind other objects using a binding directory. A binding directory is
essentially a "list" of modules that may be needed when the program runs. When the
CRTBNDRPG command specifies a binding directory, the compiler or binder searches the
binding directory to see if the program being compiled accesses any modules in the
directory. If it does, the compiler or binder binds them to the program. A binding
directory can reduce program size because the modules or service programs in a binding
directory are used only when needed. For more information about the binding
directory, see the section The YBNDDIR Model Value.

CA 2E lets you define a function as either a module or a program. During the source
generation and compilation steps, the RPGIV ILE generator ensures that references to
bound objects are correct and creates either a program object (*PGM) or a module
object (*MODULE). Created modules can be bound to created programs during
compilation, either explicitly or through the default CA 2E binding directory.

Chapter 4: ILE Programming 173

ILE Features That Affect CA

Program Calling

In ILE, you can write applications in which ILE RPG/400 programs and OPM RPG/400
programs interrelate by using the traditional dynamic program call. The calling program
specifies the name of the called program on a CALL statement. The name of the called
program is resolved to an address at run time, just before the calling program passes
control to the called program. The program name may be known to the program only
when the call is made (perhaps if the program to be called is a variable value). Because
of this, the dynamic call uses considerable system resources, and repeated dynamic calls
can reduce the performance of the calling program.

You can also write ILE applications that interrelate with faster static calls. Static calls are
calls between procedures. A procedure is a self-contained set of code that performs a
task and then returns to the caller. An ILE RPG/400 module consists of an optional main
procedure followed by zero or more subprocedures. Because the procedure names are
resolved at bind time (that is, when you create the program), static calls are faster than
dynamic calls.

Example: The CA 2E generator uses static calls where possible. Suppose a model
contains the following external functions Function PGM—generated in RPGIV, compiled
as a program object (*PGM)

Function MOD—generated in RPGIV, compiled as a module object (*MODULE)
Function MOD2—generated in RPGIV, compiled as a module object (*MODULE)
Function RPG—generated in RPG or COBOL, compiled as a program object (*PGM)

In a model with the functions just listed, the following call situations occur:

1. Function PGM calls Function MOD, using the Call Bound Procedure statement
(CALLB).

Function MOD calls Function MOD2, using the CALLB statement.
Function RPG calls Function PGM, using the Call Program statement (CALL).

Function PGM calls Function RPG, using the CALL statement.

LA

Function RPG calls Function MOD, using the CALL statement. In this case, however,
the call fails because RPG programs cannot call module objects using a dynamic call.

174 Building Applications

Generating RPGIV Source

Generating RPGIV Source

The process to invoke source generation is the same as for RPG:
m Enter a G next to the function to generate the source interactively.

m Enter aJ next to the function to generate the source and compile the object in
batch.

After the source is generated, you can view or edit it by entering an E next to the
function. The source file is QRPGLESRC and the source type is RPGLE.

Control (H) Specifications

The RPG generator uses the contents of the YRPGHSP model value as the Control (H)
specification for the generated RPG source. The RPGIV generator, however, uses the
contents of two separate model values:

YRP4HSP—Control (H) specification for objects of type *PGM
YRP4HS2—Control (H) specification for objects of type *MODULE

In addition, and unlike the RPG generator, you can add extra H lines using user source;
see the section RPGIV User Source. This is because the H-specification is keyword-based
and can take more than 80 characters.

Note: You can change the model values YRP4HSP and YRP4HS2 with YCHGMDLVAL, but
they are too long to be displayed on the Display Model Values panel.

Compiling RPGIV Source

As stated earlier, you can compile generated RPGIV source into a program object
(*PGM) with CRTBNDRPG or a module object (*MODULE) with CRTRPGMOD. To
accommodate this choice between object types, the Edit Function Details panel has two
new options, O and T:

SEL: E-STRSEU, 0-Compiler Overrides, T-ILE Compilation Type (*PGM/*MODULE)

Chapter 4: ILE Programming 175

Compiling RPGIV Source

Option O

OptionT

The O option controls the compiler overrides. Use this option if you want additional
binding directories (to use IBM APIs, for example). Because the CRTBNDRPG and
CRTRPGMOD commands have different default values, changing the object type with
the T option deletes any compiler overrides for the previous object type.

The T option toggles between PGM (*PGM) and MOD (*MODULE) as the object type
created when the source is generated and compiled. This option is available only for a
target HLL that is ILE compatible, like RPGIV. The current object type is shown at the left
of the subfile line. During generation, the change is limited to the compiler overrides in
the source (the Z* lines). Here are more details about the compile options:

m PGM—The IBM Create Bound RPG Program command (CRTBNDRPG) compiles the
generated source into a program object (*PGM). The command creates a
temporary module, binds that module into a program, and then deletes the
temporary module.

The defaults for this command are in the *CRTBNDRPG message in the *Messages
file:

CRTBNDRPG PGM (&2/&1) SRCFILE(&3/QRPGLESRC) DFTACTGRP(*NO)
BNDDIR(&YBNDDIR) DBGVIEW(*SOURCE) CVTOPT(*DATETIME) ACTGRP(*CALLER)
OPTIMIZE(*BASIC)

For details about the BNDDIR parameter value, see the section The

m MOD—The IBM Create RPG Module command (CRTRPGMOD) compiles the
generated source into a module object (*MODULE). You must then bind that
module into an ILE program, possibly with other modules.

The defaults for this command are in the *CRTRPGMOD message in the *Messages
file:

CRTRPGMOD MODULE(&2/&1) SRCFILE(&3/QRPGLESRC) DBGVIEW(*SOURCE)
CVTOPT(*DATETIME)

176 Building Applications

RPGIV User Source

RPGIV User Source

Functions generated with source type RP4 should include only user source of the type
RP4. This user source lets you take advantage of some features of the RPGIV language
that are not currently available in the CA 2E model generated source. An example is the
use of pointer variables.

RPGIV user source must reside in QRPGLESRC. The rules for naming parameter variables
in RPGIV user source are the same as for RPGlII user source. You can include all RPGLE
specification types in the source member. CA 2E sorts the specification types into their
appropriate positions within a program.

CA 2E codes the source in the normal order for RPGLE specifications, which is:

1. H specification

Any H specification lines that you add are placed after the default H specification
lines generated for the owning function source. The H specifications are taken from
the YRP4HSP and YRP4HS2 model values.

F specifications

D specifications

el

| specifications
C specifications
O specifications

P specifications, including any contained D and C specifications.

©® N o wn

Arrays

CA 2E treats the first RPG calculation specifications, which are not part of a subroutine,
as the instance code. For repeated calls to an EXCUSRSRC function, CA 2E generates the
code on every call to the function at the point indicated by the action diagram.

CA 2E automatically inserts into the ZZINIT subroutine any C specifications that follow a
subroutine but are not part of a subroutine. The order of specification is:

1. Instance (mainline) code C specifications

2. Cspecifications for subroutines called by instance code

3. Initialization C specifications

Note: In version 7.0, parameter fields (fields prefixed with #O, #| and #B) are recognized
only in the Factor One, Factor Two, and Result positions of the RPGLE calculation

specifications that are part of the instance code. They can be in upper, lower, or mixed
case. They are not currently recognized in free-format expressions.

Chapter 4: ILE Programming 177

RPGIV User Source

The following example shows an RPGIV function called Get Key that is defined into
EXCUSRSRC Function another CA 2E standard function. The EXCUSRSRC function has
three parameters:

10B Parameter GEN name
I Job date IDT

I User name USR

0] Encoded file key ABVN

The sample shows user source coded as a prototyped procedure with several distinct
sections of code:

m The procedure prototype (D specifications)
®m Inline code (to execute the procedure)

m Procedure code (including more C and D specifications)

* PROCEDURE PROTOTYPE) Inserted into
D Get Key PR 10) inline D-specs
D Job Date 7 0 VALUE)

D Job User 10 VALUE)

*

* USER_DEFINED FIELDS

D Key Date S 7 0
D Key User S 10
D Enc_Val S 10

*

* IN-LINE PROCESSING

*

* Use job date and user name as input parameters to Get Key proc.

Move #ijdt Key Date

C Move #iusr Key User Inserted into
C Eval Enc Val = Get Key(Key Date:Key User) inline C-specs

*

* Return encoded value as parameter from user source function

C Move Enc Val #oadvn
*

—_— — = — — — ~—

*

* PROCEDURE DEFINITION)

178 Building Applications

Model Value YRP4SGN

PGet_Key B)
e, *)

DGet Key PI 10)

D Job_Date 7 0 VALUE)

D Job User 10 VALUE) Inserted into
*) source after

D Job Date Ptr S) all C-specs and

D Job Date Char S 7 Based(Job Date Ptr)) all system-

D File Key S 10) generated
*) procedure code

C Move Job Date Job Date Char)

C Eval File Key = %Subst(Job _User:3:2) +)

C %Subst(Job_Date_Char:3:3) +)

C %Subst(Job User:6:2) +)

C %Subst(Job Date Char:1:3))

C Return File Key)

P E)

The user source procedure code does not need to conform to the CA 2E model naming
conventions. Field names used only in the procedure can have the full 14-characters
that the RPGIV language allows. Also, #l and #O must be within C specification lines and
not within free-format expressions like the EVAL statement.

Model Value YRP4SGN

The RPGIV generator includes some source generation options that you can set at a
model level. These options are in the new model value YRP4SGN in a data area called
YRP4SGNRFA (RPGIV source generation options). YRP4SGNRFA is a 16-character data
area, and a copy is created in each version 7.0 model library. The 16 characters are:

m Character 1—This character determines whether the RPGIV source is in upper case,
lowercase or mixed case:

- U—upper case (default)
- L—lowercase
- M—mixed case (first letter in upper case)

— If Character 1is L or M, subroutine names and internal TAG labels are upper
case.

Chapter 4: ILE Programming 179

RPGIV Generator Notes

m Character 2—This character determines the color of the comments in the
generated RPGIV source:

- G—green (default)
- W—white
- R—red
- P—pink
- B—blue
m Characters 3 - 16—These are not used in version 7.0, but are available for future

use.

The default value, which is UG, means that the RPGIV source is upper case with green
comments. If you change the value to MW, the source would be mixed case with white
comments. Therefore, RPG would generate a field name as WUABVN, but RPGIV
generates it as Wuabvn. Likewise, op-codes such as EVAL, IF, and SETOFF are Eval, If,
and Setoff.

RPGIV Generator Notes

The RPGIV ILE generator lets you create ILE programs and modules from generated
RPGIV source. However, for version 7.0 of CA 2E, note the following details and
limitations:

m Unlike the RPG and COBOL generators, the RPGIV generator is available free of
charge to any customer who already has a fully licensed CA 2E model. For
administration purposes, however, it is licensed separately, and you must
specifically request the license.

m Although the RPGIV generator options can create both *PGM and *MODULE
objects, the CRTPGM and CRTSRVPGM commands are not currently available to
create an ILE program or service program.

m The CRTBNDRPG and CRTRPGMOD default commands are held as the *CRTBNDPRG
and *CRTRPGMOD messages Y2U1022 and Y2U1024 respectively in the *Messages
file. If you wish, you can change the default parameters or add new parameters.

Service Program Design and Generation

In the CA 2E model, a function type called Service Program (*SRVPGM) is defined.
Service Programs can be copied, deleted, renamed, and so on, just like any other
function. Service Programs have no parameters or action diagram, and they can be
defined over any file. A Service Program has an associated source member, whose name
is automatically allocated, but which can be changed. The source member name will be
used for the final *SRVPGM object name.

180 Building Applications

Service Program Design and Generation

Once a Service Program is created, a developer can, through a series of screens, define
which existing module functions should be bound into the Service Program.
Additionally, they can define one or more external (non-2E) *MODULE objects to be
bound into the Service Program. For each bound module, the developer can specify
which exported procedures from the module should also be exported from the Service
Program.

When the Service Program is generated, a source member is created which includes
both the export list, as well as several compile preprocessor directives which define how
the *SRVPGM object should be created.

Service Program Overview

Within the CA 2E product, external functions can be defined with an object attribute of
either PGM or a MOD. When compiled, these functions become one of two i OS object
types-respectively, a *PGM (executable program) or a *MODULE (non-executable
module).

A *PGM object can be directly called, either from a command-line or from another
program (assuming the correct parameters are passed). By contrast, a *MODULE object
must first be 'bound' into an executable program.

Earlier releases of CA 2E provided the following ILE-specific functionality:

m Anexternal function could be given an attribute of MOD (instead of PGM). This
function would compile into a i OS *MODULE rather than a *PGM.

= All MOD functions are automatically added to the 2E model's default binding
directory YBNDDIR during the compilation process.

m The default compilation command for ILE programs forces the compiler to search
YBNDDIR for called bound modules.

m Calls to a MOD function would be generated (in RPG) as a CALLB (call-bound) rather
than a CALL.

Note: Developers could then define certain external functions (typically ones that would
never be called from a command line, such as SELRCD's) as modules. Any programs that
called these functions (EDTFIL's, etc.) would include a copy of the module object. In ILE
terms, this is known as bind-by-copy.

Chapter 4: ILE Programming 181

Service Program Design and Generation

For example, the following diagram shows the use of three PGM functions calling two
MOD functions and the resulting *PGM objects containing copies of the *MODULE
objects:

Edit Customer Edit Vendor

PGM Function

calls

MOD Function

gives us

*PGM objects

This has a number of benefits:
m Fewer *PGM objects required at runtime can simplify application deployment.

m Calls to bound modules are typically quicker than calls to other programs, due to
significantly reduced object pointer resolution overhead.

However, if a module is bound into a program and the code within the module function
needs to be changed, the *MODULE must be recompiled and then any programs that
bind that module must be changed to include the new copy of the module-typically this
would be done by regenerating/recompiled the PGM function in a 2E model, although
the i OS UPDPGM command can be run from outside the model environment.

Note: Although there are fewer *PGM objects, they are larger than if they did not
contain a copy of the module.

Service Program Functions

The new Service Program Support allows developers to create service program
functions, which are functions that equate to i OS *SRVPGM objects and can be thought
of as containers for one or more *MODULE functions. As with modules, you cannot
directly call service programs. However, when a program function is compiled into a
*PGM object, if it finds the service program (which contains the module) in the binding
directory before it finds the module itself, it performs a bind-by-reference, wherein it
simply contains a reference (link) to the module object in the service program and does
not itself contain a copy of the module object. At runtime, the program resolves (calls)
to the copy of the module contained in the service program (so the service program
needs to be available).

182 Building Applications

Service Program Design and Generation

Using service programs in this manner provides the benefit of improved performance,
due to one-time object resolution, but ensures that a change in any of the modules
contained in the service program does not require a change in the calling program, as
detailed in the following diagram.

Edit Vendor

PGM Function Edit Customer

Edit Account

calls

MOD Function

gives us

*PGM objects

*SRVPGM object

Chapter 4: ILE Programming 183

Service Program Design and Generation

Edit Function Details Panel

This existing panel displays when you take option Z (Details) against a function. For a
Service Program, this screen contains certain Service Program-specific fields, subfile
options, and function keys, as you can see in the following example:

Op: HEWROO1 SHNFST40R1 11/16/08 12:17:42
EDIT FUNCTION DETRILS HEWR0O185H

Function name . . : address service program Tupe : Service program
Received by file. ! Address Acpth: *NONE
Workstation . . . @ NPT Signature . . ! xSRVPGH
Source library. . . HEWR0O185G

Object Source Target Service program signature

? Type Name HLL Text
B sPG UUDPSPS BND The address service program is cool!

Object attribute is 'BND'
Object type is 'SPG'

New M and P selection options

SEL: E-STRSEU. 0-Compiler Overrides.|M-Hodules, P-Procedures
F3=Exit F7=0Options F8=Change name F9=Change signature F20=Narrative

The Signature field displays the current signature for the Service Program. It can take
the following values:

m *SRVPGM - The signature is the *SRVPGM object name
m *GEN - The signature is system-generated
m User-defined - the signature is a user-specified 16-byte string

Note: The signature is determined at generation time (or in the case of *GEN, at
compile-time).

You can take option M (Modules), to display the list of modules currently bound into the
Service Program (and to add more modules if you authority).

You can also take option P (Procedures) against the Service Program, to display the list
of procedures which will be exported from the *SRVPGM object (and, if you have

sufficient authority, to reorder that list).

Use function key F9 to make the Signature field input-capable

184 Building Applications

Service Program Design and Generation

There is one function option for a Service Program function - Add to Binding Directory.
This determines whether or not this service program should automatically be added to
the model's default binding directory. Whether set to Y or N, all constituent modules
will be removed from the default binding directory when the service program is created.

Setting this to N can be useful where you create multiple service programs that contain
one or more of the same modules, which therefore export the same procedures, since
this would give rise to errors when subsequently compiling programs.

Adding Modules and Procedures

The Service Program Modules panel is called when option M is taken from the EDIT
FUNCTION DETAILS panel (above).

Service Program Modules

Op: HEWR0O1 SRORYA1 1/21/09 12:01:01
SERVICE PROGRAM MODULES HEWROO185M
Function name . . : address service program Type : Service program
Received by file. : Address

? Module Library Text

_ UUDOXFR HEWRO0185G Update Address Execute external functio
_ UUAFSRR HEWROBG185G Select Address Select record

_ UUDNXFR HEWROBQ185G Process Address Execute external functio

Bottom
SEL: P=Procedures D=Remove
F3=Exit F6=Add module F12=Cancel F13=Quick exit

From this screen, you can see which modules are currently bound into the Service
Program. This list may include both 2E modules and external (non-2E) modules.

You can also press F6 to go to the SELECT MODULE screen

Chapter 4: ILE Programming 185

Service Program Design and Generation

Select Module

Op: HEWROO1 SRORYAL 1/21/09 12:02:46
SELECT MODULE HEWR0O185M

? File Function GEN name

Address temp eef UUAVXFR
Address Process Address UUDNXFR
Address Select Address UUAFSRR
Address Update Address UUDOXFR
Address 17081848 excextfun UUAXXFR
customer Select customer 2 UUCYSRR
customer Select customer 3 UUCZSRR

Bottom
SEL: X=Select P=Procedures
F3=Exit FB6=Add external module Fl2=Cancel F13=Quick exit

You can select one or more modules to bind into the Service Program, by using
subfile option X (displayed) or 1 (not displayed, but active anyway). This
automatically makes all the procedures from the module exported from the Service
Program. Alternatively, you can take option P against a module and select which
procedures they would like to export from the Service Program.

You can also press F6 to display the SELECT EXTERNAL MODULE screen

Select External Module

Op: HEWROO1 SMNFST40A1 11/16/08 14:31:42

SELECT EXTERNAL MODULES HEWROB185H

Hodule :
? Object Library Text

i Y1SRC

YADDLIBC Y1SRC Add/remove library

YALLOC Y1SRC Hemory allocation procedures

YCHKOBJC Y1SRC YCHKOBJ Check object existence

YCHKRTHC ~ Y1SRC Retrieve exit and cancel key usage

YCHDPRC Y1SRC Command processing

YCHPENC Y1SRC Compression & Encryption procedures

YCRYPTR Y1SRC Encryption/decryption routines

YCWOPTeC Y1SRC YCHGCVTOPT Spooled file conversion option proces

YCVOPTPC Y1SRC YCHGCYTOPT Prompt override program

YCYOPTXR Y1SRC Process conversion option

YCYTOPTR Y1SRC Convert AS/400 spooled file options xMODx

YCVTPDFR Y1SRC Convert spooled file to PDF document

YCYTSPeC Y1SRC YCYTSPLF Convert spooled file

YDMNAUDR Y1SRC Process menu audit

YDSCOPY Y1SRC Copy data structure fields by name

SEL: 1=Select P=Procedures
F3=Exit F5=Refresh F12=Cancel F13=Quick exit

186 Building Applications

Service Program Design and Generation

You can select one or more external (non-2E) modules to bind into the Service
Program. The initial screen is displayed empty, and you can specify subfile control
criteria so sub-select the modules to display. As with the SELECT MODULE screen,
option P is available to sub-select procedures from within the module to export
from the Service Program.

Service Program Exports

The Service Program Exports panel is displayed when option P is taken from the
EDIT FUNCTION DETAILS panel:

Op: HEWROB1 SHNFST40A1 11/16/08 12:28:00
SERVICE PROGRAM EXPORTS HEWROB185H
Function name . . : address service program Type :@ Service program
Received by file. . Address
? Hodule Library Text
Type Export name
UURFSRR HEWR0O185G Select Address Select record
*PROC UUAFSRR
UUDNXFR HEWR00185G Process Address Execute external functio
*PROC UUDNXFR
UUDOXFR HEWR00185G Update Address Execute external functio
*PROC UUDOXFR

SEL: +=Move Up -=Hove Dowun
F3=Exit F5=Refresh F12=Cancel F13=Quick exit

This allows you to display the list of procedures which are exported from the
*SRVPGM object, and if necessary, re-order them.

Note: Although this is only a requirement where, due to modules being removed
and added, the list may have changed-typically, once a Service Program has been
generated and compiled into a *SRVPGM object, this list would never be changed).

Service Program Generation Mode

When option G or J is taken against a Service Program, the generation program
creates/updates the source member (in file QSRVSRC) in the 2E model generation
library (*GENLIB). This source member contains both the export list associated with
the *SRVPGM object, as well as several compile preprocessor directives which will
be used by the CA 2E Toolkit to actually create the *SRVPGM object. These include
the following (in order):

1. The actual CRTSRVPGM command, specifying the bound modules and also
specifying the same source member as the export list definition member

2. An ADDBNDDIRE command, to add the*SRVPGM object to the YBNDDIR
binding directory (Only if function option Add to Binding Directory is set to Y)

Chapter 4: ILE Programming 187

Service Program Design and Generation

3. Multiple RMVBNDDIRE commands (one for each 2E module bound into the
Service P), to remove that module from the YBNDDIR binding directory.

4. When you compile a Service Program function using the YSBMMDLCRT
command, the 2E model generation/compile processing executes the YEXCOVR
command against the source member. This command invokes the Toolkit
compile preprocessor, which processes the compile directives in the source
member.

An example of an Service Program source member is as follows:

/*Y: CRTSRVPGM SRVPGM(HEWR00185G/UUDPSPS) + */
/*Y: MODULE (HEWR00185G/UUAFSRR HEWR00185G/UUDOXFR) + */
/*Y: EXPORT (*SRCFILE) SRCFILE(HEWR00185G/QSRVSRC) OPTION(*DUPVAR + */
/*Y: *DUPPROC *NOWARN) BNDDIR(QC2LE YBNDDIR) TEXT('The address + */
/*Y: service program is cool!') */

/*Y: ADDBNDDIRE BNDDIR(HEWR00185G/YBNDDIR) OBJ((HEWR00185G/UUDPSPS + */

/*Y: *SRVPGM)) POSITION(*FIRST) */
/*Y: RMVBNDDIRE BNDDIR(HEWR00185G/YBNDDIR) OBJ((*LIBL/UUAFSRR + */
/*Y: *MODULE)) */
/*Y: RMVBNDDIRE BNDDIR(HEWR00185G/YBNDDIR) OBJ((*LIBL/UUDOXFR + */
/*Y: *MODULE)) */

STRPGMEXP PGMLVL (*CURRENT) SIGNATURE (*GEN)

EXPORT SYMBOL (' UUAFSRR")
EXPORT SYMBOL (' UUDOXFR")

ENDPGMEXP

Processing this source member results in the UUDPSPS service program being
created in library HEWRO0185G and being added to the top of the YBNDDIR binding
directory, with *MODULE objects UUAFSRR and UUDOXFR being removed from the
same binding directory.

Note: The shipped defaults for the CRTSRVPGM, ADDBNDDIRE, and RMVBNDDIRE
commands can be customized by doing the following:

1. CRTSRVPGM - the defaults for this command are held in a shipped model message,
*CRTSRVPGM, with message id Y2U1033:

*CRTSRVPGM EXC Y2U1l033 Y2USRMSG

2. ADDBNDDIRE - the defaults for this command are held in message Y2R0130 in
Y2MSG.

3. RMVBNDDIRE - the defaults for this command are held in message Y2R0137 in
Y2MSG.

188 Building Applications

The YBNDDIR Model Value

The YBNDDIR Model Value

Specifying *NONE

The new model value YBNDDIR specifies a binding directory that can resolve the
location of any previously compiled RPGIV modules. Use this model value while
compiling RPGIV programs with the CRTBNDRPG command. The default CRTBNDRPG
command contains the following parameter:

BNDDIR (&YBNDDIR)

During the pre-compiler process, the value &YBNDDIR is replaced with the value
specified for the YBNDDIR model value, even if the value specified in the YBNDDIR
model value is *NONE.

A value of *NONE for the YBNDDIR model value causes the following:

No static binding takes place during RPGIV program compilation. RPGIV programs
use:

CRTBNDRPG...BNDDIR(*NONE)

RPGIV modules must be explicitly bound to a generated RPGIV program. Change the
compile overrides for that RPGIV program function by taking option O from the Edit
Function Details panel. In addition, specify a binding directory that already has an
entry for each module.

Chapter 4: ILE Programming 189

The YBNDDIR Model Value

Specifying a Value Other Than *NONE

A value other than *NONE for the YBNDDIR model value causes the following:

m The compiler attempts to bind any called modules by checking the binding directory
for each called module. RPGIV programs use:

CRTBNDRPG...BNDDIR(binding-directory)

m RPGIV modules generated with the CRTRPGMOD command have the following Y*
(pre-compiler) line inserted before the Z* (compile parameter) lines:

Y* ADDBNDDIRE BNDDIR(binding-directory) OBJ((source-member *MODULE))

This adds an entry for the *MODULE function to the specified binding directory at
compile time. Any external functions compiled later with CRTBNDRPG...BNDDIR that call
a *MODULE function use the Call Bound Procedure statement (CALLB). This improves
performance. However, make sure that a called module is compiled before the program
that calls it, otherwise the compilation will fail because no entry for the module will be
in the binding directory. If several objects are compiled at once, the job list processing
ensures this.

Note: If you use YCHGMDLVAL to change YBNDDIR to a value other than *NONE, the
command processor determines whether a binding directory of that name already exists
in the generation library. If it does not, a directory is created with PUBLIC(*CHANGE)
authority.

190 Building Applications

Chapter 5: Web Service Creation

Approach

This chapter describes the mechanism to expose CA 2E server-side programs via web
services, and to model this exposure.

The runtime functional deliverable is an automatically created and deployed Web
Service(s); its operations invoke 2E server-side ILE service programs.

The feature creates a Web Service containing one-to-multiple operations, where each
operation corresponds to a single procedure in a module within a 2E ILE Service
Program. Note that CA 2E Service programs can also contain modules developed outside
of a 2E model.

This section contains the following topics:

Approach (see page 191)

Installation Requirements (see page 192)
Architecture (see page 196)

Web Services Limitations (see page 199)

Sample Flow (see page 200)

Commands (see page 207)

Web Service Remote Deployment (see page 211)
References (see page 215)

IBM's i 6.1 and higher provides a Web Services Server.

IBM states, "The Web services server provides a convenient way to externalize existing
programs running i OS®, such as RPG and COBOL programs, as Web services."

The IBM Web Administration Interface provides a web-based, wizard like approach to
creating and deploying a Web Service that can invoke an RPG ILE or COBOL ILE program.

Chapter 5: Web Service Creation 191

Installation Requirements

The CA 2E support reduces the reliance on the Web Administration Interface Web
Services wizard, with a programmatic invocation of the IBM shipped scripts which
perform the pertinent Web Service administration tasks:

m [nstall a Web Service (i.e. automatically create and deploy).
m Uninstall a Web Service

Install and uninstall Web Service administration tasks are available as new 2E
commands.

Additionally, a CA 2E user can model Web Services within a 2E model enabling 2E
facilities such as impact analysis to be applied to web services.

Installation Requirements

To enable Web services provider and requestor support you must install the products
that are listed in the following link for i6.1 and higher:

http://www-03.ibm.com/systems/i/software/iws/support.html

To see the list of installed products on your machine, you should run the following
command:

GO LICPGM
Then select option 10.

RPG and COBOL source must be is compiled with the PTF's listed below to include the
information necessary to generate Web services programs or service programs.

Required IBM PTFs

In order to correctly support CA 2E (particularly Web Service Support) you need to
ensure that you have the latest IBM Cumulative Package and Latest HTTP Group PTFs
installed.

i6.1
5761SS1 - S134865

For more information on PTF's, see IBM's website.

192 Building Applications

http://www-03.ibm.com/systems/i/software/iws/support.html
http://www-03.ibm.com/systems/i/software/iws/support.html

Installation Requirements

PCML in Module

At i6.1 and higher, after the PTF's are installed, but before the module source is
compiled by CA 2E, the following statements must exist in the module source. The
PGMINFO statement does not have to be manually added at i6.1 and higher.

RPG
H PGMINFO(*PCML:*MODULE)
coBOL
PROCESS OPTIONS PGMINFO(PCML MODULE)"

Note: 2E does not automatically generate these PGMINFO source lines.

An easy method to accomplish generation of PGMINFO into i6.1 and higher source is to
create an EXCUSRSRC member containing the PGMINFO statement and then include
that statement in the AD of the module, as in the following examples:

1. "PCML PGMINFOQO" is a function of type EXCUSRSRC.

Op: COCSIO1
SBC1277MDL
: MYEXCUSRSRC x X 1ST LEVEL xx

QPARDEVOEROT 1/13/09 9:26:50
EDIT FUNCTIONS

File name. . .

? Eunction
_ PCML PGMINFO

Function type Access path

Execute user source *NONE

More. ..
D=Delete 0=0pen
H=Generate HTML ...
F23=More options

SEL: Z=Details
T=Structure

F3=Exit F5=Reload

Fll=Next View

P=Parms S=Device

F=Action diagram
A=Access path
F7=File details

G/J=Generate function
F9=Add functions

Fl17=Services F21=Copy *Template function

Chapter 5: Web Service Creation 193

Installation Requirements

2. Source member for the EXCUSRSRC function contains "H PGMINFO(*PCML :
*MODULE)".

Edit

ng of da
+ #HIDULE)

3. AD of function EXCEXTFUN shows a call to the user source.

EDIT ACTION DIAGRAM Edit SBC1277MDL AUDIT

FIND=> EEFX
1(C,I,S)F=Insert construct 1(X,0)F=Insert alternate case
1(R,E,Q,%,+,-,=,=A)F=Insert action IMF=Insert message

IPCML PGMINFO - MYEXCUSRSRC x

F3=Prev block F5=User points F6=Cancel pending moves F23=More options
F7=Find F8=Bookmark F9=Parameters F24=More keys

194 Building Applications

Installation Requirements

The generated source for the module shows the included PGMINFO line:

[R LT I R RN
LR R R PR PR PR R R P LTS At b b ok ok ok ek

cternal functin

Note: At i6.1 and higher, it is not necessary to add the PGMINFO statement, but you
must ensure that the Compiler Overrides for the Module have the PGMINFO
parameter set to PGMINFO(*PCML *MODULE).

In addition to modifying CA 2E functions using EXCUSRSRC to include the keyword
PGMINFO(*PCML : *MODULE), the YRP4HS2 model value can be used to alter H spec
generation (for an RP4 module) on a model-wide basis.

YRP4HS2 (*MODULE) ships with a value of '"H DATFMT(*YMD) DATEDIT(*YMD)
DEBUG(*YES)".

Changing the value, as below, ensures any generated module is generated with
contained PCML:

YCHGMDLVAL MDLVAL(YRP4HS2) VALUE('H DATFMT (*YMD) DATEDIT(*YMD) DEBUG(*YES)

PGMINFO(*PCML : *MODULE)"')

Chapter 5: Web Service Creation 195

Architecture

Architecture

The fundamental components of this solution are the new 2E commands that
encapsulate programmatic invocation of IBM's Web Service Administration scripts.

IBM ships the following scripts.

Script Purpose
installWebService.sh Create and deploy a Web Service
listWebServices.sh List Web Services deployed to a Web Services
Server
startWebService.sh Start a deployed Web Service
stopWebService.sh Stop a deployed Web Service
uninstallWebService.sh Uninstall a deployed Web Service
createWebServicesServer.sh Create Web Services Server*
deleteWebServicesServer.sh Delete Web Services Server*
startWebServicesServer.sh Start Web Services Server*
stopWebServicesServer.sh Stop Web Services Server*

Note: It is not the intention of this phase of the CA 2E Web Service support to mimic all
functionality available within the Web Administration interface. This release allows a
Web Service to be modeled and to be installed to/uninstalled from a Web Services
Server.

Two new 2E commands mirror and invoke functionality of two of the scripts:

2E command Purpose
YCRTWS Create and deploy a Web Service (installWebService.sh)
YUNSWS Uninstall a deployed Web Service (uninstallWebService.sh)

Note: The Web Service Administration interface (and therefore) scripts cannot operate
on a remote environment; i.e. all WS work is for local machine.

196 Building Applications

Architecture

A new 2E function type of Web Service (WEBSRV) is available within the model.

Op: COCsIO1 QPADEVERED 1/06/09 10:58:49
DISPLAY FUNCTION TYPES SBC1288MDL
Function type: ! {== Position display

? Type Abbrev Classification
Execute external function EXCEXTFUN *EXT
Execute internal function EXCINTFUN *INT
Execute user program EXCUSRPGM *EXT
Execute user source EXCUSRSRC *INT
Print file PRTFIL *EXT *RPT
Print object PRTOBJ *INT *RPT
Prompt & validate record PMTRCD *EXT *SCR *DSP
Retrieve object RTVOBJ *INT
Select record SELRCD *EXT *SCR *DSP
Service program SRVPGM
Trigger function TRGFUN *EXT
Web service WEBSRV *WS
WS Proxy function WSPXY *EXT

SEL: X-Select value, Z-Display description.
F3=Exit, no selection

A function of type Web Service cannot be generated and does not have an action
diagram. Its purpose is to serve as an umbrella for any number of Web Services
Instances. A Web Service instance corresponds to a web service that is or can be
deployed to a Web Services Server. The function of type web service has a customized
EDIT FUNCTION DETAILS panel. This panel stores the default name of any created web
service instance, as well as the 2E file/function that represents the target Service
Program to be exposed.

Op: COCsIOol QPADEVOOOD 1/06/09 10:58:27
EDIT FUNCTION DETAILS SBC1288MDL

Function name . . : Maintain_customer_uWS Type : Web service
Received by file. : Customer Acpth: xNONE

Web service name . . . : MHINTHINCUSTNS
Service program file . : stomer
Service program function: Maintain_customer SP

F3=Exit F7=0ptions F8=Change name
F10=Create Web Service Fl6=Associated Web Services F20=Narrative

Chapter 5: Web Service Creation 197

Architecture

The EDIT FUNCTION DETAILS panel provides option F10 to invoke YCRTWS.

=1 Session A - [24 x 8]
Flo Edt Vien Commncabon fcbons Widow Hep

)| B[] % | e[X8| 2] @@

Create el ice Instance

Type choices, press Enter

te model? *JPDTNSSTE
'CUSTOMER' H e alue
'MAINTATNCUSTHS®

=CUR B T

model file

model fu

gram object

Library name

= rofile .
Runtime library list

+ for

Bottom

efresh Fl2=Cancel use this display

o 1502 - Sessinn successfly starced

198 Building Applications

Web Services Limitations

The EDIT FUNCTION DETAILS panel also provides option F16 to invoke WEB SERVICE
INSTANCES PANEL:
=1 Sescion A - [24 x 80] EIEIE|

Fie Gdt Yien Commmicabon dcbns Wirdaw Hep

)|)@ o] (] 0| 2] @@

OPADEVEDOY T/14/09 10:39:36
WEE SERVICE INSTAMCES
Function name: MAINTAINCUSTWS
Service name: MAINTARINCUSTWS

Machine SEry Library Installed?

*CURRENT : COCSI01 SBC1294GEN H
0A COCSI01 SBC1294GEN N

SEL: 4=Delete I=Install U=sUninstall

Web Services Limitations

This feature relies on the Web Services Server which is part of the IBM i operating
system. Only 2E service programs generated as RPG ILE or COBOL ILE are candidates for
exposure. The Web Service client portion is not created by this feature.

IBM states: "There are a few limitations within the Web services server regarding the
deployment of services. To retrieve the most current information on restrictions, refer
to the document located at
/QIBM/ProdData/OS/WebServices/V1/server/docs/readme.txt."

The YCRTWS and YUNSWS commands require the user issuing command to have special
authorities *ALLOBJ and *I0SYSCFG. This is due to the underlying IBM IWS scripts
requiring those special authorities.

Chapter 5: Web Service Creation 199

Sample Flow

Sample Flow

One of these limitations you need to be aware of is this: When a module is defined with
a RCD parameter definition, in the generated source a data structure is used as the
parameter for the *ENTRY PLIST. If some of the fields on the RCD parameter data
structure are not being used as parameters, then due to an IBM limitation in the PCML
generation, in the IBM Test client interface you will see redundant parameters (or
subfields) named "_unnamed_1", "_unnamed_2", etc. These can be ignored and do not
cause any problems.

Full details of the restrictions can be viewed in IBM's documentation.

Note: To call a deployed web service on a web services server, the user ID that is on the
Properties for the web service needs to satisfy the following criteria: 1. The user ID must
have the necessary authority to this program object and any other additional program
objects. 2. The server profile QWSERVICE must have *USE authority to the user ID.

This section shows an example of how you might use these new features in CA 2E. Some
settings and selection might vary depending on your system configuration.
To define and deploy a Web Service from CA 2E

1. Identify a Service Program that has module operations you want to expose via a
web service.

Op: COCSIO1 QPADEVOOED 1/06/09 10:19:05
EDIT FUNCTIONS SBC1288MDL
File name. . . : Y16937240 XK 18T LEVEL xx
Service program
? Function Function type Access path
! SRVPGMO1 Service program *NONE

More. ..
SEL: Z=Details P=Parms F=Action diagram S=Device D=Delete 0=0pen
T=Structure A=Access path G/J=Generate function H=Generate HTML ...
F3=Exit F5=Reload F7=File details F9=Add functions F23=More options
Fl1=Next View F17=Services F21=Copy xTemplate function

200 Building Applications

Sample Flow

2. Create a new Web Service type function.

Op: COCSIO1 QPADEVOOBD 1/06/09 10:20:52
EDIT FUNCTIONS SBC1288MDL
File name. . . : Y16937240 18T LEVEL xx
Web service

Function Function type Access path
|_JEER Web service *NONE

More. ..
SEL: Z=Details P=Parms F=Action diagram S=Device D=Delete 0=0pen
T=Structure A=Access path G/J=Generate function H=Generate HTML
F3=Exit F5=Reload F7=File details F9=Add functions F23=More options
Fli=Next View F17=Services F21=Copy xTemplate function

3. Zoom into the Web Service function to Edit Function Details.

Op: COCSIOL QPADEVEOOD 1/06/08 10:21:30
EDIT FUNCTI DETAILS SBC1288MDL

Function name . . : WS1 Type : Web service
Received by file. : Y16837240 Acpth: xNONE

Web service name
Service program file
Service program function:

F3=Exit F7=0ptions F8=Change name
F10=Create Web Service FlB=RAssociated Web Services F20=Narrative

Chapter 5: Web Service Creation 201

Sample Flow

4. Specify the Web Service Name and Select Service Program.

Op: COCsIOL QPADEVOOOD 1/06/09 10:21:30
EDIT FUNCTION DETAILS SBC1288MDL

Function name . . : WS1 Type : Web service
Received by file. : Y16937240 Acpth: *NONE

Web service name . . . : MYSERVICE
Service program file . : |7

Service program function:

F3=Exit F7=0Options F8=Change name
F10=Create Web Service Fl1B=Associated Web Services F20=Narrative

Note: On Service program file and Service Program function allows user to choose
file, as in the following example:

Op: COCSIOL QPADEVOOOD 1/06/09 10:25:58
DISPLAY OBJECTS SBC1288MDL

? Type Description Attr

___ <== Position display
FIL Customer =
FIL MY STR STR

FIL Y16937240 REF

SEL: X-Select value, N-Narrative.

F3=Exit, no selection

202 Building Applications

Sample Flow

Users can also choose function, as in the following example:

Op:

EDIT FUNC
File name.

Function
SRVPGMO1

Y¥16937240

Service

SEL: X=Select P=Parameters
C=Copy L=Locks
F3=Exit F5=Reload

U=Usages
F9=Add function

5. EDIT FUNCTION DETAILS

Auxiliary details populated.
EDIT FUN DETAILS

WS1
Y¥16937240

Function name
Received by file.

. ByservicE
Y16937240
SRVPGHO1

Web service name
Service program file
Service program function:

F7=0Options
F10=Create Web Service

F8=Change name

R=References

Fl6=Associated Web Services

cocsiol
SBC1288MDL

QPADEVOOOD 1/06/09 10:26:26

2ND LEVEL

X%

Service program
Function type
program

Access path
*NONE

More. ..

¥=Y2CALL
F21=Copy xTemplate function

N=Narrative

cocsiol
SBC1288MDL

QPADEVOOOD 1/06/09 10:27:20

Web service
*NONE

Type
Acpth:

F20=Narrative

Chapter 5: Web Service Creation 203

Sample Flow

Note: Any number of Web Service Instances can be created from the EDIT
FUNCTION DETAILS panel. Each Web Service will be associated with the 2E Web
Service function in the panel header.

All the associated Web Services can be viewed using F16 to invoke the WEB
SERVICE INSTANCES panel.

To create a Web Service Instance with a different Web Service name, you should
change the Web Service Name on Edit Function Details, then press F10.

Note: If any of the instances have been installed to a server and the Installed Flag is
set to Y, then the Web Service Name, Service Program File and Service Program
Function all become Output only. This is to ensure that the Web Service details in
the model, and the installed Web Service Instance, are in synch.

Create the Web Service Instance (YCRTWS)

Fi= Edt W

B E(@ R

Type choices,
Update model? > *ADD, *NO, =*UPDINS

r value

+ for

Bottom
F3=Exit F4=Prompt FS=Refresh F12=Cancel F13=How to use this display
F24=More keys

o 1902 - Session sucoemsfuly sharied

Note: See the section New Commands for the command parameter descriptions.

204 Building Applications

Sample Flow

Work with Web Service Instances:
=1 Session A - [24 x BD] (A=

Fi Edt Men Commncabon dcbons Widae e

] || | % Bl @

OPARDEVEBEY T/14/09 10:39:36
WEB SERVICE IMNSTANCES SBi MDL
Function nam HAINTAINCUSTWS File name: CUSTOMER
name: MAINTAINCUSTHWS Service p : UUFHSPS

Machine Profile Library Installed?

SEL: 4=Delete I=Install UsUninstall
F3=Exit

i 1905 - Sessior succesafy staried

A machine name of *CURRENT indicates that the Web Service instance is to be
deployed on the local machine. If you enter any other machine name other than the
local one, the Installed flag will always be set to ?, since the machine is not
available.

You can only take option | - Install for a Web Service Instance with Machine =
*CURRENT. To install Web Service instances to a remote machine, you must use the
Web Service Remote Deployment feature. For further details of this please refer to
the corresponding section in this chapter.

Chapter 5: Web Service Creation 205

Sample Flow

206 Building Applications

Use option | to install a modeled Web Service to a Web Services Server.

He ok vew Commuicaton Adions Widow Hep
B B A% @m =@ 2| @] @@

Op: COCSIOL

WEB SERVICE INSTANCES SBC1294MDL

Function name: MAINTAINCUSTWS
Service name: MAINTAINCUSTWS

QPADEVE0OOY 7/14/09 10:39:36

File name: CUSTOMER
Service program: UUFHSPS

Machine Server Profile Library Installed?

CURRENT WSERVICE SI01

SBC1294GEN N
CURRENT WSERVICEQA COCSIOL

SBC1294GEN N

SEL: 4=Delete

I=Install U=Uninstall
F3=Exit

MA a

557 1902 - Session successfuly started

09/002

Use option U to uninstall a modeled WS from a Web Services Server.

o1 Session A - A - [24 x 80]
Fle Et View Commuricaon Actons Window Help

EIE
B B 2% S|« (] 2o o] el

Uninstall Web Service (YUNSWS)

F4=Prompt F Refresh 1 ancel F13=How to use t

1902 - Session successfuly stated

05/037
ikslpet1 kel ho2 on 130.119.26. 202

Commands

10. Use IBM Web Administration interface to start/stop/test deployed Web Service.

http://{your machine}:2001

Web Ad

WebSphere.

All Servers | HTTP Servers Application Servers | ASF Tomcat Servers

© Stopped [Z) senver| WSERVICE - V1.3 (web sewvices) v

~ Comman Tasks and Wizards WSERVICE

J Create Web Senvices Server
J Create HTTP Server =
3 Create Application Server Manage Web Services Server

3 Migwate Oniginal to Apache Server: WSERVICE

J Create WehSphere Portal

J Create IBM Workplace

Web senices semver WSERVICE, created by the Create Web Senices Sewer wizard

v Wieb Setvices Wizards

J Deploy New Service
The Web senices server provides a convenient way o extemalize existing programs running on IBM i, such as RPG and COBOL programs, as Web
senices. Web senice clients can then interact with these ISM i program based services fram the Intemet or intranet using Web senvice based industry
standard communication protacols such as SOAP. The clients can be implemented using a variety of platforms and pragramming languages such as C,
G+, Java and .NET. An easy to use wizard is provided to configure the Web senices server and the senices for IBM i program objects. Other
management functions such as starting, stopping and deleting senices are also provided

For more information, please visit: hitp: funwww-03 iom. com/systems/ilsoftwarefins/

 Server Properties
B Properties
D Server Tracing
D View HTTF Servers

~ Genices
B Manage Deployed Services

~ et Performance
€ Web Performance Advisor ©auoim
~ Problem Determination Manage ©ruom:
0 ViewLogs Deployed @auom3
View Create Summary Senices e
AUDITA
€ comerremp
 UUBNSPS1

Commands

In addition to the install/uninstall functionality in the EDIT FUNCTION DETAILS and WEB
SERVICE INSTANCES panels, the 2E Web Service commands can be invoked from the
command line using the commands listed below:

Command Function

YCRTWS Installs a Web Service instance.

YUNSWS Uninstalls a deployed Web Service instance.

Chapter 5: Web Service Creation 207

Commands

YCRTWS (Create Web Service Instance)

The Create Web Service Instance (YCRTWS) command is used to install a web service to

the IBM Web Services Server that contains an operation to invoke the RPG ILE or COBOL
ILE program specified.

Update model? (UPDMDL)
Specifies if and how the model is updated.
*ADD
New WS instance is added to the model (it must not already exist).
*NO
The model is not updated at all.
*UPDINSSTS
For a WS instance that already exists, the Installed status is updated.
Install to server? (INSTALL)
*YES

The WS is installed to a Web Services Sever. The WS instance name must be
unique to the specified Web Services Server.

*NO
The web services server is not updated at all.
2E WS model file (MDLFIL)
Model-file-name
Specify the name of the 2E WS model file that owns the 2E WS model function.
2E WS model function (MIDLFUN)

Model-function-name

Specify the name of the 2E WS model function to which the web service
instance will be associated.

Machine (MACHINE)

Specifies the name of the machine onto which the web service instance will be
deployed.

*CURRENT
Refers to the local machine.
name
Specify the machine name. This can be the local machine or a remote machine.

The machine name is not validated and the machine need not exist on the
local, or indeed any network.

208 Building Applications

Commands

SERVER (char (10))
The name of the web services server in which the service will be installed.
server-name
Specify a web services server name.
SERVICE (char(25))
The name of Web service to be installed.
*PGMOBJ
The program object name will be used.
service-name
Specify the name of the web service to be installed.
PGMOBI (*PNAME)
The path to the ILE program or service program.
server-name
Specify the path to the ILE program or service program.
USRPRF (*VNM)
The user profile that the Web service will run under.
*USRPRF

The web service will be created to run under the user profile that is invoking
the YCRTWS command.

user-profile
Specify the user profile that the Web Service will run under.

Note: This user profile is granted access to all the Web service files and
directories. If the service user ID is different from the server user ID, the server
user ID must be given *USE authority to the service user ID.

*SRVID
The Web services server user ID is used to run the service.

RTLIBL

A list of libraries, that will be added to the library list prior to invoking the Web
service.

library-list
Specify the list of libraries.
*NOCHG

No user-specified libraries will be added to the run-time library list.

Chapter 5: Web Service Creation 209

Commands

YUNSWS (Uninstall Web Service)

The Uninstall Web Service (YUNSWS) command is used to uninstall a web service from
the IBM Web Services Server that contains an operation to invoke the RPG ILE or COBOL
ILE program specified.

The command can also update the installed status of the WS in the model or delete the
modeled service entirely.
Update model?
This specifies if and how the model is updated.
*DELETE
The WS instance is deleted from the model.
*NO
The model is not updated at all.
*UPDINSSTS
For a WS instance that already exists, the Installed status is updated
Uninstall from server? (UNINSTALL)
*YES
The WS is uninstalled from the Web Services Sever.
*NO
The web services server is not updated at all.
Web Services Server
The name of the web services server from which the service will be uninstalled.
server-name
Specify a web services server name
Web Service
The name of Web service to be uninstalled.
service-name

Specify the name of the web service to be installed.

210 Building Applications

Web Service Remote Deployment

Stop Service?
An indication whether the service should be stopped before an uninstall.
*YES
The service is stopped before uninstall.
*NO

The service is not stopped before uninstall. An error will be returned if the
service is active.

Running YUNSWS will delete or update the record in YWSICTLRFP file, providing
UPDMDL is not *NO.

Web Service Remote Deployment

With Web Service Support in 2E, it is possible to bundle up Web Service instances that
need to be ported and deployed to a remote machine. To do this you will need to use

the Web Service Remote Deployment feature. Use the following commands to utilize

this feature:

YPOPWSIPDD (Populate WSIPDD file)
=1 Session A - [24 x B0] [NEH

Ele Edt Yien Commasabon febens Window Hep

)| | A | (o] x| 2] @@

Populate WSIPDD file (YPOPWSIPDD)
Type choices, press Enter

Model ebject list EMDLPEF Mame, x*MDLPRF, =xUSER. .
Library name M *MDLLIB

Target D library ; E GEMNLIB

Add ar repl data R tREPLACE, =ADD

Filter machine Mame, =ALL, =*CURRENT

Filter se P e e e e A *haracter value, =ALL

Filter se

Target machine { § *[NSTANCE, =CURRENT

Target se P e e e e 3 TAN sharacter value, =xI ANCE

get se o

Target object library

Target user profile . e L *[MNSTAN ®USRFPF. .

Target runtime library List . . M C ter w: e. ®MNOCHG. .

+ for more walues

Bottom
F3=Exit F4=Prompt F5=Refresh Fl2=Cancel F13=How to use this display

F24=Mcre keys

o 1502 - Sessinn successfly starced

Chapter 5: Web Service Creation 211

Web Service Remote Deployment

Populates a Web Service Instance Portable Deployment Data file (WSIPDD). Once
populated, a WSIPDD file can be moved to a remote machine, where the related
YEXCWSIPDD (Execute WSIPDD) command can process the file to deploy web service
instances on that remote machine.

Notes:

Portable deployment does not require CA 2E or 1E to exist on the remote machine
on which the YEXCWSIPDD command is running. However, the YEXCWSIPDD
command does require certain application objects to exist on the machine on which
the command is running. These objects can be created in a target library using the
YDUPAPPOBJ command parameter, *WS argument. The YEXCWSIPDD command
takes a WSIPDD file as an input.

To run this command the YCA/CAWS/UserData and YCA/CAWS/ProdData/YQSHLOG
folders need to exist in the IFS. Take extra care with this in the case where the
command is being used on a remote machine that does not have 2E installed.

For more information on how to restore the YCA structure, see the section "Web
Services Support" in the Installation Guide.

212 Building Applications

Web Service Remote Deployment

The YPOPWSIDD command takes a model list as input. The model list is processed and
for each function of type Web Service, additional processing occurs (items in the list that
are not Web Service functions are ignored). For each Web Service function, all its web
service instances are processed. Where a web service instance is not excluded due to
filtering arguments on the YPOPWSIPDD command, an instance record will be created in
the target WSIPDD file.

Note: The target WSIPDD file is always called YWSIPDDRFP, but the location is specified
on the WSIPDDLIB parameter.

The Target parameters on the YPOPWSIPDD command allow the modelled web service
instance data to be overridden when populated to the WSIPDD file.
YEXCWSIPDD (Execute WSIPDD file)

=¥ Session A - [24 x B
= ur

BEE

Execute WSIPDD file (YEXCWSIPDD)
Type choices, press Enter

Target YWSIPDD library | | Name, *GENLIB

Target machine *INSTANCE Name, *xINSTANCE, *CURRENT

Target server * INSTANCE Character value, xINSTANCE

Target service *INSTANCE

Target object library xINSTANCE Name, *xINSTANCE

Target user profile *INSTANCE Name, *INSTANCE, *USRFPF..

Target runtime library List . . *INSTANCE Character value, *NOCHG..
+ for more values

Bottom
F3=Exit F4=Prompt F5=Refresh Fi2=Cancel F13=How to use this display
F24=More keys

05/037

! 1902 - session successfuly started

This command executes a Web Service Instance Portable Deployment Data file
(WSIPDD), to deploy web service instances. The WSIPDD file should have been
populated by the CA 2E YPOPWSIPDD command. Typically the WSIPDD file is then
moved to a different machine to be executed by the YEXCWSIPDD command.

Note: Portable deployment does not require CA 2E or 1E to exist on the remote
machine, on which the YEXCWSIPDD command is running. However, the YEXCWSIPDD
command does require certain application objects to exist on the machine on which the
command is running. These objects can be created in a target library using the
YDUPAPPOBJ command (see the ¥*WS argument for the DUPOPT) parameter. The
YEXCWSIPDD command takes a WSIPDD file as an input.

Chapter 5: Web Service Creation 213

Web Service Remote Deployment

Note: The input WSIPDD file is always called YWSIPDDRFP, but the location is specified
on the WSIPDDLIB parameter.

For each record in the WSIPDD file with an ACTION flag of 'I' a web service instance will
be deployed by the YCRTWS command. The Target parameters on the YEXCWSIPDD
command allow the WSIPDD web service instance data to be overridden when
deploying.

Note: If a web service instance is successfully deployed as a result of the YEXCWSIPDD
command instance record's Action flag is updated to BLANK. The YINZWSIPDD
command can be used to reset the WSIPDD Action flag.

YINZWSIPDD (Initialise WSIPDD file)

The YINZWSIPDD command can be used to reset the Action flag on records in a WSIPDD
file. See the YEXCWSIPDD command for more information.

To bundle up and deploy your remote Web Service instances

1. Create the Web Service Application objects using YDUPAPPOB)

There are a number of objects that need to be created in order to use Web Service
Remote Deployment. These should be created by running the YDUPAPPOBJ
command as follows:

il fon_iactions Window _ Help

o (%) et @] @l

Duplicate Application Objects (YDUPAPPOBJ)
Type choices, press Enter
Library for generation Name, xGENLIB, xCURLIB

Objects to duplicate *ALL, *CRT, =*EXEC, *CUATXT..
Create option x| *NEW, *ALL

Bottom

F3=Exit F4=Prompt F5=Refresh Fl12=Cancel F13=How to use this display
F24=More keys

07/037

214 Building Applications

References

References

You can either create these objects into the Model Generation library, or into a new
library to be used for deployment.

2. Build a model list containing all the Web Service functions whose modeled Web
Service instances you want to portably deploy.

3. Use the YPOPWSIPDD (Populate WSIPDD file) command to populate the target
YWSPDD file.

See the command description above for details.

4. Copy the library that contains the WSIPDD file (this will be the library that you
created your WS application objects into) to the remote machine.

5. Onthe remote machine, use the YEXCWSIPDD (Execute WSIPDD file) to deploy each
of the Web Service instances in the portable deployment file. See command
description above for details.

The YEXCWSIPDD command calls the YCRTWS command for each record in the portable
deployment file, which installs the WS Instance on that machine. If a Web Service
already exists on the machine, the deployment for that Instance record will fail, and the
Action field will be left as 'l'.

m |BM information Center
m Integrated Web Services for i

m Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language", 26
June 2007, W3C

m Web Services Architecture, W3C Working Group Note", 11 February 2004, W3C

Standards and Web Services

Chapter 5: Web Service Creation 215

Chapter 6: IBM i Database Trigger Support

In the i OS operating system, a trigger is a set of actions that execute automatically
when a program performs a specified change operation on a specified database file. The
change operation can be an insert, update, delete or read high level language (HLL)
statement in an application program. You can design triggers to do almost
anything—some uses for triggers include:

m Enforcing business rules
m Validating input data

m Writing to other files for audit trail purposes

Some benefits of using triggers are:

m Faster application development: Because triggers are stored in the database,
actions performed by triggers do not have to be coded in each database application

m Global enforcement of business rules: A trigger can be defined once and then
reused for any application using the database

m Easier maintenance: If a business policy changes, it is necessary to change only the
corresponding trigger program instead of each application program

m Improve performance in client/server environment: All rules are run in the server
before returning the result

This section contains the following topics:

Implementing Triggers (see page 218)

CA 2E Model Support (see page 223)

Model to Run-Time Conversion (see page 234)
Run-Time Support (see page 234)

Chapter 6: IBM i Database Trigger Support 217

Implementing Triggers

Implementing Trigders

A trigger is attached to a file using the IBM Add Physical File Trigger (ADDPFTRG)
command. This command specifies the database change operation that must occur for
the trigger to fire. It also specifies the time the trigger should fire relative to the
database change operation (before or after the database change has occurred). A
trigger program defines the set of actions to perform when the trigger is fired. Trigger
programs are named in the ADDPFTRG command.

When an application program makes a change to the data in a database file, i OS Data
Management (DM) checks for the existence of a trigger for the file. If a trigger exists,
DM then calls the specified trigger program. The application program never explicitly
calls the trigger program.

IBM defines the parameters that must be passed by DM to all trigger programs as
follows:

m Parameter 1: Trigger buffer

m Parameter 2: Trigger buffer length

The trigger buffer parameter consists of a fixed-length portion and a variable-length
portion. The fixed-length portion contains various fields that describe the trigger. The
fixed-length portion contains a series of offset/length pairs that define where the old
record format (ORF) and the new record format (NRF) are stored within the
variable-length portion.

The variable-length portion contains the ORF and NRF values themselves as well as
null-byte maps for each record format. The trigger buffer length parameter defines the
overall length of the trigger buffer parameter. With these parameters, the trigger
program has access both to information about the trigger itself and also full details of
the data being updated, deleted, inserted, or read.

In addition to performing additional processing to that defined in the application
program that is changing the database, a trigger can actually cancel the database
change and signal to the application program that the change was unsuccessful. Under
some circumstances, the trigger can also change the data that is being written to the
database, overriding the data used in the update statement in the application program.

218 Building Applications

Implementing Triggers

Typical Trigger Implementation

User-written trigger programs typically perform semi-generic processing to retrieve the
file-specific ORF and NRF from the trigger buffer and move them into named structures
prior to performing trigger-specific processing. This retrieval processing often involves
relatively high complexity. Such processing can require the use of relatively esoteric
functionality like pointer-based variables and dynamic memory operations not normally
found in most HLL programming.

As a result of IBM’s implementation of triggers (and particularly the way in which DM
passes parameters to the trigger program), developers typically write separate trigger
programs for each database file. A single trigger program may be used for more than
one trigger on that file, however.

This implementation also makes it difficult to test trigger programs, since any
test-harness must exactly duplicate the trigger buffer parameter specific to the file to
which the trigger is attached.

In addition, the actual insertion of a trigger into the database (either initially or
following a change in a trigger) requires multiple file locks on the database file and on all
related access paths, often requiring the database to be taken offline during trigger
implementation.

The following diagram shows the structure of a typical (non-CA 2E) trigger showing how
the various components interact.

1 Application 2 Data
Frogram Managerment
(AFPP) ()

+ !
3 Trigoer

Frogram
(TRG)

L

Database
File
(FILE)

The processing flow is as follows:

1. Application program (APP) executes a database change statement (an INSERT,
DELETE or UPDATE), resulting in a low-level call to i OS Data Management (DM).

2. DM calls the trigger program (TRG) specified for the trigger.
3. TRG performs user-defined processing and then returns control to DM.

4. If DM receives an error code from TRG (indicating that an error occurred during the
processing in TRG), it does not update the file and instead sends the error code
back to APP. Otherwise, it updates the file and returns control to APP.

Chapter 6: IBM i Database Trigger Support 219

Implementing Triggers

CA 2E Trigger Implementation

The CA 2E trigger implementation replaces multiple user-written, file-specific trigger
programs with a single, generic file-independent Trigger Router that you can specify as
the trigger program for any trigger over any database file. The Trigger Router uses a
rule-based system held in a Trigger References File to call one or more further Trigger
Functions that have previously been created in the CA 2E model. These functions are
called either directly or asynchronously through a separate Trigger Server. You can
specify each Trigger Function to perform any user-defined processing.

The parameters passed from the Trigger Router to a Trigger Function are simplified
file-specific individual parameters. They represent the various elements of the trigger
buffer parameter that was passed from DM to the Trigger Router. This simplification
allows a test-harness to be generated in CA 2E very easily.

This implementation is also flexible enough to allow additional trigger functionality to be
added, changed and tested very easily, simply by creating new Trigger Functions and
updating the Trigger References File to link the Trigger Function to the trigger.

Note: If the Trigger Router routes a Trigger Function to the Trigger Server, the server
cannot return an error code to the Trigger Router (and thence to the application
program). Consequently, any processing within such Trigger Functions must be
non-critical, since any failure within this processing will not be able to roll back the
database change.

The following diagram shows the structure of a CA 2E trigger showing how the various
components interact.

220 Building Applications

Implementing Triggers

1 Application 2 Data
Program [™ Management Database
(AP (D) File
FILE
T 7 {FILE}
3 Trigger
= mm e]
! Router Trigger
! {RTR) References
|
I
! ¥ ¥ ¥
: Trigger Trigger Trigger
| Function Function Funection
: (FUM) [FUM) [FUM)
|
I
i Trigger Sener Job
| Triggar
I
R ol Terer
=t oy
¥ ¥ ¥
Trigger Trigger Trigger
Function Function Function
[FLHN) [FLM) (FLUMNY

Chapter 6: IBM i Database Trigger Support 221

Implementing Triggers

The processing sequence for a CA 2E trigger is as follows:

1. An application program (APP) executes an INSERT, UPDATE or DELETE statement,
resulting in a low-level call to i OS Data Management (DM).

2. DM calls the Trigger Router (RTR) specified for the trigger.

3. RTR checks the Trigger References File to see if there are any Trigger Functions
(FUN) to call for this trigger. There may be more than one FUN that should be called
for a trigger. For each FUN record, if the FUN calling method is 'CALL', process steps
3.1. through 3.3. If the FUN calling method is 'DTAQ/, process steps 3.4. through 3.5.

a.

RTR calls FUN directly, passing the pre-determined setoff parameters specific
to the database file being processed

FUN performs user-defined processing and returns control to RTR. If processing
is unsuccessful, FUN returns error code to RTR

If RTR receives an error code from FUN, it does not process any more FUN
records, but returns the error code to DM. Otherwise, RTR returns to step 3 to
process any subsequent FUN records in the Trigger References File

RTR places an entry on the Trigger Data Queue. The data queue entry contains
the same parameters as would be passed in a CALL to FUN.

RTR returns to step 3 to process any subsequent FUN records in the Trigger
References File.

4. If DM receives an error code from TRG, it does not update the file and instead sends
the error code back to APP. Otherwise, it updates the file.

There are three separate sections to the CA 2E trigger support:

m CA 2E Model Support

m Model to Runtime Conversion

m RunTime

222 Building Applications

CA 2E Model Support

CA 2E Tridger Limitations

1.

Triggers are only supported when the physical files on which trigger is
implemented, are present in the generation library, denoted by model value
(YGENLIB).

When we convert the database from DDS to DDL or SQL, the access path objects get
recreated in SQL collection library, denoted by the model value YSQLLIB. However,
because of a limitation in trigger processing algorithm, the trigger functionality can
only be implemented on access paths present in generation library, denoted by the
model value YGENLIB. Therefore, trigger implementation fails when you convert the
database from DDS to DDL or SQL and the SQL collection library is different from
the Generation Library.

The following lists the steps that you must perform for the trigger functionality to work
after converting the database from DDS to DDL/SQL:

1.

Ensure that the SQL collection library is same as the Generation library, (that is,
both model values YSQLLIB and YGENLIB hold the same value) before regenerating
your access paths as DDL or SQL. This ensures that the DDL/SQL type access paths
objects are recreated in the same library where the original DDS-based access paths
existed.

After converting the database to DDL or SQL, delete the trigger reference by using
YWRKTRGREF command and choosing option 4=Delete against the access path that
is being converted from DDS to DDL/SQL.

Rerun the YCVTTRGDTA command.

CA 2E Model Support

Model Support provides the ability, within the CA 2E model environment, to create and
change Trigger Functions, to assign triggers to CA 2E database file definitions, and to
manage Trigger Functions. This section contains information about:

Administrative Tasks
Creating Trigger Functions
Editing Trigger Functions

Using Trigger Commands

Performing Administrative Tasks

Initially, an administrator needs to run the YDUPAPPOBJ command specifying
DUPOPT(*ALL) CRTOPT(*ALL). This copies the required application objects (including an
empty copy of the Trigger References File YTRGCTLP) into any existing application
libraries. Once you do this, no further administration tasks are required.

Chapter 6: IBM i Database Trigger Support 223

CA 2E Model Support

Creating Trigger Functions

You can create a Trigger Function by specifying either "Trigger Function" or "TRGFUN"
for the Function Type, in exactly the same way that you would create any other CA 2E
function. When you enter a Trigger Function using the Action Diagram Editor (ADE), you
can include any processing that you would include in any other non-interactive function
(including calling any other non-interactive function). You have access to all the *Trigger
Control Data and ORF parameters as input-only, and the NRF and return code
parameters as input/output.

When you create a Trigger Function (TRGFUN), the CA 2E model automatically creates a
file-specific parameter list for the function. The Trigger Router passes the list to the
function as follows:

Return code.
Trigger Control Data structure (from the *Trigger Control Data system file).

Old record format (ORF) structure (from the owning file).

Eal S

New record format (NRF) structure (from the owning file).

The Trigger Control Data structure contains fields retrieved from the parameters passed

by Data Management to the Trigger Router, as well as some derived fields, as follows:

Field

Description

*Trigger File

Database file being updated

*Trigger File Library

Library of database file being updated

*Trigger File Member

Member of database file being updated

*Trigger Event

Database change event which caused trigger to fire

*Trigger Time

Trigger time relative to database change

*Trigger Commit Level

Commitment control level of database file being
updated

*Trigger Timestamp

Timestamp of trigger firing

*Trigger Record Length

Length of database file record format

*Trigger Job Name

Name of job which updated database file

*Trigger Job User

User of job which updated database file

*Trigger Job Number

Number of job which updated database file

*Trigger App Program

Program which updated database file

*Trigger App Library

Library of program which updated database file

224 Building Applications

CA 2E Model Support

Note: The *Trigger Job fields are included to allow asynchronous Trigger Function calls
to determine the name of the job that actually changed the database file, rather than
using the job fields from the Trigger Server. The *Trigger App Program and *Trigger App
Library fields allow Trigger Functions to make processing decisions based on the
application program that caused the file change. In r 8.1, the *Trigger App Library is not
currently used and is passed as blank to the Trigger Function.

Chapter 6: IBM i Database Trigger Support 225

CA 2E Model Support

Editing Trigger Functions

Once you create a Trigger Function, you can edit it using the Action Diagram Editor.
From the EDIT FILE DETAILS panel, you can access a new EDIT FILE TRIGGER DETAILS
panel to link Trigger Functions to a specific trigger for the owning file. This
cross-reference link information is held in a CA 2E model file called YFILTRGRFP (MDL
File Triggers) in an internal model-level format.

Press F18 from Edit File Details screen to get Edit File Trigger Details screen. Use this
screen to link Trigger Functions to triggers based on the owning file.

EDIT FILE TRIGGER DETAILS

File name : cat
Attribute: REF
Source Library : UUA1SAMPLE
Distributed : N

Assimilated physical . . .:

D=Delete F=Action Diagram

? Time Event Cmt Seq Function
A/B D/I/R/U Ctl
Y/N
_ A D N 1 Trg fun — after, del
A I N 1 Trg fun 2 — after ins.

F3=Exit F4=Prompt F5=Refresh

Within the Display Model Usages screen, any trigger references specified in the model
(that is, any Trigger Functions are linked to a trigger on the file over which they were
created from the EDIT FILE TRIGGER DETAILS screen) are displayed with reason
*TRGREF.

Gen Objs : 1 Display Model Usages Model: <name>

226 Building Applications

CA 2E Model Support

Total . : 2 Level : 001
Object . : Trg fun — after, del Owner .: cat
Type . . : FUN Attribute . . : RPG Exclude system objs . *YES
Scope *NEXT Filter . . *ANY Current Objects only . *YES
Object . . Type . . Reason . . *FIRST
2=Edit 3=Copy 4=Delete object 5=Display 8=Details 1@=Action diagram
13=Parms 14=GEN batch 15=GEN interactive 16=Y2CALL
Opt Object Typ Atr Owner Lvl Reason
_ cat FIL REF 001 *TRGREF

Trg FUN RPG cat 000 *OBJECT
F3=Exit F5=Refresh F9=Command line F12=Previous F15=Top level
F16=Build model list F21=Print list F22=File locks F23=More options

Chapter 6: IBM i Database Trigger Support 227

CA 2E Model Support

Editing Trigger Parameters

When a new TRGFUN (Trigger Function) is created, the parameters are automatically
derived from the based on file. If a database change occurs, however, it is necessary to
visit the parameter details screen for the affected file. This automatically corrects the
parameters for the function as shown in the following example. No other action is

needed.

Function name. .

? Field

cat code

cat date

cat status

F3=Exit

Received by file .

Parameter (file) .

EDIT FUNCTION PARAMETER DETAILS

: Trg fun — after, del

. cat

: cat

Usage

<model name>

Type : Trigger function
Acpth: Physical file

Passed as: RCD

Role Flag error
MAP
MAP

MAP

SEL: Usage: I-Input, 0-Output, B-Both, N-Neither, D-Drop.

Role: R-Restrict, M-Map, V-Vary length, P-Position. Error: E-Flag Error.

Parameter ‘cat status’ has been added for this trigger function.

Using Trigger Commands

The following commands affect Trigger Functions, Trigger Servers, and Trigger

References:

228 Building Applications

CA 2E Model Support

Convert Trigger Data (YCVTTRGDTA)

The Convert Trigger Data (YCVTTRGDTA) command allows users to convert data from
the CA 2E model internal file YFILTRGRFP into data in the run-time Trigger References
File YTRGCTLP. The parameters for the YCVTTRGDTA command are:

Library for Data Model (MDLLIB)

This parameter is the name of a library containing the name of a design model from
which the condition values are converted. The possible values are:

m *MDLLIB\-—Use the first model library found in the library list
m *CURLIB—Use the current library to invoke the job
Library for Generation (GENLIB)

Note: This library must contain the trigger runtime objects. These can be duplicated
into the library by specifying the library as the target of the YDUPAPPOBJ command
specifying DUPOPT(*TRG).

This parameter is the name of the library into which the command places converted
values. The possible values are:

m *TRGLIB— Use the trigger runtime library named by the YTRGLIB model value
in the model library.

m *GENLIB- Use the source generation library named by the YGENLIB model value
in the model library.

m *CURLIB—Use the current library to invoke the job
m library-name - Specify the library into which converted values are placed.
Triggers to Convert (CVTOPT)

This parameter determines which trigger references should be converted from the
model specified in the MDLLIB parameter into run-time trigger reference data in
the YTRGCTLP trigger reference file in the library specified in the GENLIB parameter.

m *NEW—Only converts trigger references that do not currently exist in the
run-time YTRGCTLP trigger reference file

m *ALL—Converts all trigger references in the model specified in the MDLLIB
parameter into run-time trigger reference data. If any of the trigger references
already exist in the YTRGCTLP trigger reference file, they are overwritten.

m *MDLLST—Checks the model list specified in the MDLLST parameter and only
converts trigger references for Trigger Functions specified in the model list that
were explicitly selected. If any of the trigger references already exist in the
YTRGCTLP trigger reference file, they are overwritten.

Model Object List (MDLLST)
Note: This parameter is ignored unless CVTOPT(*MDLLST) is specified.

Chapter 6: IBM i Database Trigger Support 229

CA 2E Model Support

This parameter is the qualified name of the model object list to use. Trigger
references are converted for any Trigger Functions existing in the list and that were
explicitly selected. Any other object types in the list, or any Trigger Functions that
were not explicitly selected, are ignored.

Possible model object list name values are:

m *MDLPRF—Special value meaning that the model object list name is retrieved
from the user profile extension record for the current user is used as the model
object list name.

m *USER—Special value meaning that the user profile name of the current user is
used as the model object list name.

model-object-list-name
The name of the model object list to use.
Possible library values are:

m *MDLLIB—Special value meaning that the first model library in the current
library list is used as the library for the object list

m library-name—Name of the model library that contains the model object list

230 Building Applications

CA 2E Model Support

Start Trigger Server (YSTRTTRGSVR)

The Start Trigger Server (YSTRTTRGSVR) command allows you to start one or more
Trigger Server jobs. Once started, these jobs monitor the YTRIGGERQ data queue in the
library specified in the command. The YSTRTRGSVR command parameters are as
follows:

Trigger Data Queue Library (TRGLIB)

Specifies the name of the library containing the CA 2E Trigger Data Queue,
YTRIGGERQ. If a Trigger Data Queue does not exist in the specified library, one is
created.

Job Description (JOBD)

This parameter specifies the job description to use for the CA 2E Trigger Server
job(s).

Since a Trigger Server runs as a continuous batch process until it is ended with the
End Trigger Server (YENDTGRSVR) command, the processor overrides the job
description you choose to use JOBQ(QSYS/QSYSNOMAX), to ensure that the Trigger
Server is submitted using a job queue that allows multiple active jobs. All other job
definition attributes are taken from the job description specified in this parameter.

The possible values are:
*USRPRF

The job description for the user profile used by the job that is currently running
is used for the trigger server job.

job-description-name

Specify the name (library-name/job-description-name) of the job description
used for the trigger server job.

Number of Servers (NBRSVR)

Specifies the number of Trigger Server jobs that should be started by this command.
All Trigger Server jobs use the same job description (as specified in the JOBD
parameter) and will all monitor the same Trigger Data Queue YTRIGGERQ in the
library specified in the TRGLIB parameter.

Since the Trigger Data Queue is a FIFO (first-in, first-out) data queue, if multiple
Trigger Server jobs are running concurrently, each trigger request will be selected
from the Trigger Data Queue by the first available Trigger Server job. There is thus
no guarantee of the order in which the trigger requests will be processed, since this
depends on many factors affecting the speed at which each Trigger Server job runs.

Consequently, if trigger requests must be processed in the same order in which the
original trigger fired, you should process the trigger requests synchronously as a
direct call by the Trigger Router, or you should ensure that only a single Trigger
Server job monitors a specified Trigger Data Queue.

Chapter 6: IBM i Database Trigger Support 231

CA 2E Model Support

Running more than one Trigger Server job concurrently can improve system
performance where many asynchronous trigger requests can appear at once.
However, it will not affect the performance of the job in which the trigger was fired.

The values are:
*DFT

A single Trigger Server job is started to monitor the Trigger Data Queue in the
library specified in the TRGLIB parameter.

*MAX

9 Trigger Server jobs are started to monitor the Trigger Data Queue in the
library specified in the TRGLIB parameter. The maximum number of Trigger
Server jobs that can be started is 99, but we retained the value for this
parameter as 9 to preserve existing functionality.

Number-of-trigger-server-jobs

Between 1 and 99 Trigger Server jobs can be started to monitor the Trigger
Data Queue in the library specified in the TRGLIB parameter.

Clear Data (CLEAR)

Specifies whether data should be cleared from the Trigger Data Queue prior to
starting the Trigger Server job(s).

The possible values are:
*YES

Any data queue entries on the YTRIGGERQ Trigger Data Queue is removed
before the specified number of Trigger Server jobs are started

*NO

Any data queue entries on the YTRIGGERQ Trigger Data Queue are not
removed before the specified number of Trigger Server jobs are started.
Consequently, they are processed immediately when the Trigger Server jobs
start

End Trigger Server (YENDTRGSVR)

The End Trigger Server (YENDTRGSVR) command allows users to end one or more
previously started Trigger Server jobs. The parameters to the YENDTRGSVR command
are as follows:

Trigger data queue library (TRGLIB)—Specifies the name of the library containing the CA
2E Trigger Data Queue YTRIGGERQ

232 Building Applications

CA 2E Model Support

Work with Trigger References (YWRKTRGREF)

The Work with Trigger References (YWRKTRGREF) command allows users to display,
add, delete or change Trigger Reference data. This is the data held in the Trigger
References File that links specific database triggers to one or more Trigger Functions.
Data is initially placed into this file because the YCVTTRGDTA command was run.

The YWRKTRGREF command parameters are as follows:
Trigger File (TRGFIL)

Specifies the name of the physical file you want to edit CA 2E trigger references.
The possible values are as follows:

m *ALL—Display all CA 2E trigger references

m trigger-file-name - Display the CA 2E trigger references for the specified file
only

Reload Trigger References (YRLDTRGREF)

The Reload Trigger References (YRLDTRGREF) command forces the Trigger Router
(YTRIGGER) to reload its internal memory with the latest data from the Trigger
References File (YTRGCTLP).

Trigger Reference Data in the Trigger Router

When the Trigger Router is first invoked within a job (because a trigger fires and the
Trigger Router is defined as the trigger program), it loads the data from the Trigger
References File into internal memory. On subsequent invocations within the same
job, it uses the data it stored in memory rather than re-accessing the Trigger
References File.

This processing ensures the best possible performance, since file I/O to the Trigger
References File is performed only once during a job, rather than every time the
Trigger Router is invoked. However, if changes are made to the data in the Trigger
References File, these changes will not be reflected in the data used by the Trigger
Router.

If you have made changes to the data in the Trigger References File you can execute
this command to ensure that the next time the Trigger Router is invoked, it will use
the changed data.

Note: Since each job has its own instance of the Trigger Router (with its own
internal memory), you must run this command within the job that caused the
Trigger Router to be invoked.

Chapter 6: IBM i Database Trigger Support 233

Model to Run-Time Conversion

Model to Run-Time Conversion

This process converts a CA 2E model trigger definition into a trigger reference held in
the Trigger References File. The Trigger Router interrogates this file when a trigger fires
to determine which Trigger Functions to call.

You can convert model data in the MDL File Triggers file YFILTRGRFP into run-time data
in the Trigger References File YTRGCTLP. This conversion process involves expanding
model references into CPF (i OS) object names. The conversion process can also include
the actual creation of the triggers over the database files (specifying the Trigger Router
as the trigger program in each case).

A copy of the Trigger References File is shipped in the CA 2E base product library and
can be copied into each application library using the CA 2E YDUPAPPOBJ command.

Run-Time Support

Trigder Router

This section covers all of the run time aspects of trigger support within CA 2E-generated
application programs, including the implementation of the Trigger Router, Trigger
Server and Trigger References File.

There are two elements to the CA 2E trigger run-time support:
m Trigger Router

m Trigger Server

When an application program updates a database file and the file has a trigger attached
to it that specifies the Trigger Router as the trigger program, the Trigger Router checks
for any records in the Trigger References File for the trigger. For each record found, it
takes the appropriate action by directly calling the specified Trigger Function or sending
a request for the Trigger Function to be called by the Trigger Server, by passing the
Trigger Function parameters as an entry in the Trigger Data Queue.

If the Trigger Router is called but no matching record exists for the database file in the
Trigger Reference File, the Trigger Router checks the value of the YTRGERR data area. If
the YTRGERR data area has a value of *WARN, a message is sent to the job log stating
that the Trigger Reference File data is missing. If the YTRGERR data area has a value of
*ERROR, the Trigger Router will throw an error and the database file transaction will not
continue.

The Trigger Router is implemented specifying ACTGRP(*CALLER) and USRPRF(*OWNER),
according to IBM recommendations. All *PUBLIC access to the Trigger Router is
*EXCLUDE.

234 Building Applications

Run-Time Support

Tridder Server

When the Trigger Server starts, it looks for entries to appear on the Trigger Data Queue.
When an entry appears (placed there by the Trigger Router), the Trigger Server calls the
specified Trigger Function and then returns to monitor mode.

DISPLAY CONVERT MODEL DATA MENU

1. Convert model messages to database file.

2. Convert condition values to database file.

3. Convert distributed files to database file.

4. Convert trigger data to database file.

Option:

F3=Exit F6=Messages F8=Submitted jobs F9=Command line

Trigger Runtime Externalization

The 2E trigger support allows you to define a separate trigger runtime library, using the
YDUPAPPOBIJ command. This simplifies the copying of all trigger-related objects from
your development machine to a production machine. The trigger runtime library
contains all the objects required for trigger support.

The model value YTRGLIB (Trigger runtime library) is used to specify the name of the
library in which the model trigger references are copied using the YCVTTRGDTA
command. Before running the YCVTTRGDTA command, you must copy the trigger
runtime objects into the YTRGLIB library using the YDUPAPPOBJ command, specifying
DUPOPT(*TRG). You can assign a special value of *GENLIB to YTRGLIB model value to
specify that the model source generation library will be used. By default, YTRGLIB is
shipped with a value of *GENLIB.

Note: Multiple models can use the same trigger runtime library.

Chapter 6: IBM i Database Trigger Support 235

Chapter 7: Modifying Function Options

This chapter identifies the specific features of the standard function options that allow
you to customize the functions in your model. This chapter also instructs you on how to
specify these options.

This section contains the following topics:

Understanding Function Options (see page 237)

Specifying Function Options (see page 237)

Identifying Standard Function Options (see page 238)

Identifying Standard Header/Footer Function Options (see page 251)

Understanding Function Options

When a new function is defined, default options are set according to the function type
and the model values. However, if your application requires it, you can change the
default. You use the Change Model Value (YCHGMDLVAL) command to set the default
value for certain options.

For more information on function types and the function options that apply to each
type, see the chapter "Defining Functions."

Specifying Function Options

Function options are specified using the Edit Function Options panel. The options
available depend on the function type.

Note: Some function options cause a corresponding section of the function’s action
diagram to be omitted or included.

For more information on action diagrams, see the chapter, "Modifying Action
Diagrams."

Chapter 7: Modifying Function Options 237

Identifying Standard Function Options

Choosing Your Options

Use the following instructions to specify your function option choices.

1.

Zoom into the file. At the Edit Database Relations panel, type F next to the selected
file and press Enter. The Edit Functions panel appears.

Zoom into the function. Type Z next to the selected function and press Enter. The
Edit Function Details panel appears.

Note: You can also display this panel by entering option 2 for the selected function
on the Edit Model Object List panel.

Press F7 to select options. The Edit Function Options panel appears.

You can press F10 to toggle between a display of options available for the selected
function and all available options. The current value of each function option is
shown highlighted.

Press F5 to view a list of the available standard header/footer functions. You use
this display to explicitly assign a standard header/footer function to your function.

Select your options. Make your function option selections and press Enter. The Edit
Function Details panel reappears.

Identifying Standard Function Options

Database Changes

Create

The standard function options control the features of the standard functions. The
following pages describe the standard function options and their available features.

The database changes function options determine whether the program provides add,
change, and delete capabilities. You can select a combination of these features.

For edit type functions, all three features default to Yes. This means that, by default, all
edit type functions allow add, delete, and change capabilities.

This option specifies whether the function allows you to add new records to the
database files on which the function is built.

If Y is specified, the user can add database records with the function

If N is specified, the user cannot add database records with the function

238 Building Applications

Identifying Standard Function Options

Change

Delete

Display Features

Confirm

This option specifies whether the function allows you to change existing records on the
database files on which the function is built.

m [fYis specified, you can change database records

m [f Nis specified, you cannot change database records

This option specifies whether the function allows you to delete existing records from the
database files on which the function is built.

m [fYis specified, you can delete database records with the function

m |f Nis specified, you cannot delete database records with the function

The display features function options determine whether a function should include such
features as a subfile selector column or a confirm prompt after data entry.

This option specifies whether the function prompts for confirmation before updating
the database files. A confirmation prompt appears at the bottom of the panel on which
you can specify yes or no.

m [fYis specified, the function prompts the user for confirmation before updating the
database files

m [f Nis specified, the function updates the database files without prompting for user
confirmation

Chapter 7: Modifying Function Options 239

Identifying Standard Function Options

Initial Confirm Value

This option specifies the initial value that the confirmation prompt shows. This may be Y
or N. The end user only needs to press Enter to accept the default value for newly
created functions as specified by the YCNFVAL model value. This option only applies if
the Confirm option is set to YES.

m [fYis specified, the initial confirmation prompt value is Y
m [f Nis specified, the initial confirmation prompt value is N
m |f Mis specified, the YCNFVAL model value is used

Note: If you have a National Language version of the product, the initial values reflect
the national language version.

Standard Header/Footer Selection

Press F5 at the Function Options panel to select a non-standard header/footer for your
function's device layout.

If Action Bar, What Type?

Subfile Select

If the selected header/footer has an action bar, this option specifies the type of action
bar to display. This option is available only for NPT generation.

m [f Ais specified, display a CA 2E action bar.
m [f Dis specified, display a DDS menu bar.

m |f Mis specified, the YABRNPT model value determines the type of action bar to
display. Valid model values for YABRNPT are A or D.

This option specifies, for functions that have subfiles, whether the subfile is to have a
selection column on the left side of the function.

m [fYis specified, the subfile has a selection column
m |f Nis specified, the subfile does not have a selection column

Note: If Yes is specified for the Delete option, a subfile selection column must be
specified.

240 Building Applications

Identifying Standard Function Options

Subfile End Implementation

This option specifies, for functions that have subfiles, whether the + sign or More. . .
displays in the lower right location of the subfile indicating that the subfile contains
more records.

m [f Pis specified, a + sign indicates that the subfile contains more records. This is the
shipped default.

m [fTis specified, More. . . indicates that the subfile contains more records. Bottom
displays to indicate that the last subfile record is displayed.

Dynamic Program Mode

Exit After Add

Repeat Prompt

This option specifies whether the function automatically determines the initial mode of
execution (add or update). This is based on whether records are present in the file. If
there are any restrictor parameters or selection criteria, the records present are
checked against the criteria.

m [f Nis specified, the initial program mode is fixed

m [fYis specified, the initial program mode is set dynamically

This option specifies whether the function exits after addition of a new record.
Exit After Add is available only on Edit Record (EDTRCD, EDTRCD2, and EDTRCD3)
functions.

m [fYis specified, you exit the program after successfully adding a record. You can use
this option when the EDTRCD function is called from another function

m |f Nis specified, you do not exit the program after adding a record, except when
Bypass Key Screen = Yes and the key is defined as an Input Restrictor parameter

This option specifies whether the prompt redisplays after user processing of accepted
prompt values.

Repeat Prompt is available only on Prompt Record (PMTRCD) functions that have
validation of prompt and user data.
m [fYis specified, the prompt redisplays

m |f Nis specified, the prompt does not redisplay

Chapter 7: Modifying Function Options 241

Identifying Standard Function Options

Bypass Key Screen

Post Confirm Pass

Send All Messades

If all key fields are supplied as restrictor parameters, this option specifies whether the
key screen is bypassed (not displayed) before the detail panel . The Bypass Key Screen
function option is available only on Edit Record (EDTRCD, EDTRCD2, and EDTRCD3)
functions.

m [fYis specified and all key fields are non-blank at function execution time, the key
screen is bypassed

m [f Nis specified, the key screen is not bypassed

Notes:

m Whenever the full key is passed into any EDTRCD, the key screen is bypassed
even when Bypass Key Screen is N. The key fields do not need to be restrictor
parameters for this to happen.

m If Bypass Key Screen is specified, all key field values must be supplied as
restrictor parameters to bypass the display of the key screen. If key field values
are not supplied as restrictor parameters, the key screen displays even though
this option is Yes.

This option specifies whether the function is to re-read the database file and to update
the subfile after confirmation; for example, to calculate line values based on totals.

If post confirm pass is specified, an additional user point is added to the function.

m [fYis specified, the function carries out a post confirm pass of the subfile

m [f Nis specified, the function does not carry out a post confirm pass of the subfile

Option

This option specifies whether an error message is sent to the message subfile at the
bottom of the panel for the first error found, or for each error found. In either case, any
outstanding messages are cleared each time Enter is pressed.

m [fYis specified, send all error messages to the message subfile at the bottom of the
panel.

m |f Nis specified, send only the first error message.

m |f Mis specified, use the value of the YSNDMSG model value. Valid model values for
YSNDMSG are *YES and *NO.

242 Building Applications

Identifying Standard Function Options

Exit Control

The exit control function options determine the execution characteristics of a program,
such as:

m Whether or not it terminates or remains invoked but inactive
m Whether or not it reclaims resources as it terminates

m Whether messages are copied back to the calling program on termination

Reclaim Resources

This option specifies whether the i OS Reclaim Resources (RCLRSC) command is to be
invoked when the program completes execution.

The command closes down any other programs and/or files that have been called
and/or opened by the program, and reallocates their storage.

Reclaim Resources is valid only on external functions (functions implemented as
programs in their own right). It is ignored for functions implemented in COBOL since this
command is not valid for COBOL programs.

m [fYis specified, reclaim resources are invoked.

m |f Nis specified, reclaim resources are not invoked.

Closedown Program

This option specifies whether the RPG Last Record Indicator is set on when the program
finishes execution.

m [fYis specified, all files are closed and the program is shut down

m |f Nis specified, all files remain open and a subsequent call is faster and performs a
full program initialization

Notes:

m In either case, all internal variables are initialized to blanks and zeros on each
call. If closedown is N, arrays are not cleared. This permits arrays to be used to
store WRK variables. The PGM context variable *INITIAL CALL is available to
determine if this is a first time subsequent call.

m COBOL has no direct equivalent of the RPG Last Record Indicator. The top-level
program initiates the Run Unit. All programs called from this top program
remain in the Run Unit until the top-level program itself closes down.

Chapter 7: Modifying Function Options 243

Identifying Standard Function Options

Copy Back Messages

This option specifies whether any messages outstanding on the program’s message
gueue are copied to the previous program’s message queue when the program
terminates. The default value for new functions is specified by the YCPYMSG model
value.

m [fYis specified, messages are copied back to the calling program’s message queue.

m [f Nis specified, messages do not copy back to the calling program’s message
queue.

m If M is specified, the model default is used. Valid model values for YCPYMSG are
*YES and *NO.

Commitment Control

These function option values determine the commitment control regime for a program.

Using Commitment Control

This option specifies whether the program that implements the function runs under i OS
Commitment Control and, if so, whether it contains the main commit points. i OS
commitment control provides a means of automatically grouping a number of database
updates into a single transaction for the purposes of recovery: either all or none of the
updates take place.

If you link together several functions as one transaction group, CA 2E determines where
the commit points are located.

m |f M (*MASTER) is specified, the program runs under commitment control. This
program is the controlling program and contains the commit points. The program
ensures that commitment is active by calling a CA 2E supplied program, Y2BGCTL. It
also includes the appropriate commit points.

m [f S (*SLAVE) is specified, the program runs under commitment control. No
automatic start or commit points are included. You can add commit points by using
the COMMIT built-in function. Commit operations can be performed by a calling
program (typically *MASTER) function.

m |f N (*NONE) is specified the program does not run under commit control.

Note: Any physical (PHY) file updated by programs running under commitment control
must be journaled.

For more information about commitment control and journaling files, see the i OS
Programmers Guide.

244 Building Applications

Identifying Standard Function Options

Exception Routine

The routine determines how program exceptions (errors) are handled for a program.
This option applies only to RPG. It is not supported by COBOL/400.

Generate Exception Routine

This option specifies whether code for an exception handling routine (*PSSR) should be
generated in the program that implements the function. This provides an opportunity
for you to add user-defined exception handling. The default value for new functions is
specified by the model value YERRRTN.

m [fYis specified, source code is generated that implements an error handling
routine. In this case, all files in the program open explicitly using the OPEN
operations. The *PSSR routine contains a call to the CA 2E supplied program,
Y2PSSR. The source for this program is in QRPGSRC in Y2SYSRC and can be adjusted
to supply specific error handling.

m [f Nis specified, source code is not generated for an error handling routine.

Generation Options

Generation Mode

The generation options determine the generation mode and panel text constants for the
program.

This option specifies the method of database access used for the functions. Generation
mode is determined by the model value YDBFGEN. You can override this value at the
function level.

m |f Dis specified, the database access method is DDS.
m |f Lis specified, the database access method is DDL.
m [fSis specified, the database access method is SQL.

m |f Ais specified, the access path generation value of the primary access path of the
function is used.

m [f Mis specified, the value of the model value YDBFGEN is used. Valid model values
for YDFGEN are *DDS, *SQL and *DDL.

Chapter 7: Modifying Function Options 245

Identifying Standard Function Options

Generate Help

Help Type for NPT

This option specifies whether help should be generated.

If Y is specified, help text is generated for this function.
If N is specified, no help text is generated for this function.

If O is specified, only generate help text for this function; do not generate any of the
function’s other components. You can only specify O for functions with Help Text
for NPT set to U (*UIM).

If M is specified, the value of the model value YGENHLP determines whether Help is
generated for this function. Valid model values for YGENHLP are *YES, *NO, and
*ONLY.

This option specifies the type of help text associated with this function when it is
generated as an NPT function.

If T is specified, the help text is Text Management (TM). Help text is created in a
source member and processed by the Display Help program.

If U is specified, the help text consists of links from the Display File source to an i OS
Panel Group compiled from source containing the i OS User Interface Manager
(UIM) tag language.

If M is specified, the model value YNPTHLP determines the type of help text
generated. Valid model values for YNPTHLP are *UIM and *TM.

Generate as a Subroutine

This option specifies, for the EXCINTFUN type, whether to implement the function inline
or as a subroutine.

If Y is specified, the EXCINTFUN is implemented as a subroutine.
If N is specified, the EXCINTFUN is implemented inline. This is the default.

246 Building Applications

Identifying Standard Function Options

Share Subroutine

This option specifies whether the generated source for an internal function (subroutine)
is to be shared. This applies to CHGOBJ, CRTOBJ, DLTOBJ, RTVOBJ, and EXCINTFUN
functions types.

If Y is specified, generated source for subroutines is shared. In other words, source
code is generated the first time an internal function is called and the source is
reused for all subsequent calls to the function. The interface for the subroutine is
externalized.

If N is specified, source code is generated each time an internal function is called.
The interface for the subroutine is internal.

Screen Text Constants

This option specifies the generation mechanism used for screen text.

Execution Location

If Lis specified, panel literals are hard coded in the device source.

If I is specified, panel literals are placed in a message file. For the iSeries, they are
accessed through the DDS MSGID keyword.

If M is specified, the value of the YPMTGEN model value is used. Valid model values
for YPMTGEN are *OFF, *LITERAL, and *MSGID.

This option specifies where the function is executed. This option is only valid for
EXCINTFUN and EXCUSRPGM.

If S is specified, execute the internal function or user program on the server

If W is specified, execute the internal function or user program where the user
point is found

Overrides if Submitted Job

This option specifies the source of SBMJOB parameter overrides when you submit a job
for batch execution from within an action diagram. This option applies only to
EXCEXTFUN, EXCUSRPGM and PRTFIL function types.

If * is specified, use the default overrides defined by the “*Sbmjob default override’
message attached to the *Messages file in Y2USRMSG

If F is specified, use the override defined for the function

This feature does not support function calls that contain multiple-instance array
parameters.

Chapter 7: Modifying Function Options 247

Identifying Standard Function Options

Environment

The environment options determine the environment in which source code is generated
for the program.

Workstation Implementation

This option specifies whether interactive CA 2E functions are to operate on
non-programmable terminals (NPT) or on programmable workstations (PWS)
communicating with an iSeries host. For programmable workstations, you also specify
the PC run-time environment.

m |f Nis specified, the generated code operates on a non-programmable terminal
(NPT) attached locally to the host computer.

m |f Gis specified, CA 2E functions are generated for non-programmable terminals
together with a Windows executable running in a Windows environment under
emulation to the host.

m If)is specified, CA 2E functions are generated for non-programmable terminals
together with a Windows executable running in a Windows environment under
emulation to the host and a Java executable running in a Windows environment
using a Web browser with emulation to the host.

m |f Vis specified, CA 2E functions are generated for non-programmable terminals
together with a VisualBasic executable running in a Windows environment under
emulation to the host.

m [f Mis specified, use the value of the YWSNGEN model value to determine the type
of workstation. Valid model values for YWSNGEN are *NPT, *GUI, *JVA, *VB.

Note: The values *GUI (G), *JVA (J), and *VB (V) require an interface to GUI products.

248 Building Applications

Identifying Standard Function Options

Distributed File I/0 Control

This option specifies the kind of I/O control to generate for the function. This enables
you to use DRDA to access files on multiple remote relational databases (RDBs). This
option only applies if the function is generated using SQL or DDL for the Generation
Mode.

Note: SQL access can be used in Generation Mode even if the access paths are
generated using DDS.

m |fSis specified (Synon Control), DRDA is used. The function is driven by the
configuration entries (RDBs) of the function’s default Retrieval access path. The
table of the distributed files is created by executing the YCVTDSTFIL command. The
configuration entries are added/modified using the YWRKDSTFIL command.

Note: Synon Control is not applicable for Print files and Execute External functions.
When Synon Control is specified for these two functions, User Control is used.

m |f Uis specified, (User Control), DRDA is used. The function contains distributed
functionality/ capabilities but is not automatically driven by the configuration table
entries. The initial relational database that the application is connected to are the
current relational database unless overridden by action diagram logic that modifies
the PGM context field *Next relational database.

This field can be used within Synon Control to override the default processing.

m If Nis specified, do not generate any distributed functionality for this function. This
is equivalent to *NONE for the YDSTFIO model value.

m |f Mis specified, use the value of the YDSTFIO model value to determine the type of
distribution 1/O control access. Valid model values for YDSTFIO are *NONE, *USER,
and *SYNON.

For more information on DRDA, see Generating and Implementing Applications in the
chapter "Distributed Relational Database Architecture."

Chapter 7: Modifying Function Options 249

Identifying Standard Function Options

Null Update Suppression

This option specifies whether the CHGOBJ function type suppresses the record update
when the before and after images of the record are the same. Use this function option
to override the YNLLUPD model value.

If N is specified, CHGOBJ always updates the record.

If Y is specified, CHGOBJ checks whether to suppress database update both after
the After Data Read and after the Before Data Update user points. The record is
updated if the before and after images of the record differ.

If Ais specified, CHGOBJ checks whether to suppress database update after the
After Data Read user point. The record is updated if the before and after images of
the record differ.

If M is specified, use the YNLLUPD model value to determine whether CHGOBI is to
update the record if the before and after images are the same. The valid model
values for YNLLUPD are *NO, *AFTREAD, and *YES.

For more information about:

Null update suppression see *Record Data Changed PGM Context, in the chapter
"Modifying Action Diagrams"

The CHGOBIJ function, see CHGOBJ Database Function in the chapter, "Defining
Functions"

250 Building Applications

Identifying Standard Header/Footer Function Options

Identifying Standard Header/Footer Function Options

dWhen you create a function with a device design, CA 2E assigns a default standard
header/footer. You can override this default for any function by pressing F5 from the
Edit Function Options panel to display a selection list of all standard header/footer
functions.

The default standard header/footer is determined by the function options defined for
the functions in the standard header/footer shipped file.

For more information and a list of the standard header/footer functions, see Standard
Headers/Footers in the chapter "Modifying Device Designs."

To view the function options for the standard header/footer functions, follow these
steps.

1. Atthe Edit Database Relations panel, type *S in the object field to display the list of
shipped files beginning with those that begin with S.

2. Type F next to the *Standard header/footer file to display the list of all standard
header/footer functions for the file. Each function contains function options and a
header and footer format for a function panel design.

3. Type Z next to the standard header/footer function you want to view.

4. Press F7 to display the Edit Function Options panel for the selected function.

Standard Header/Footer Function Options

The function options defined for each standard header/footer function apply to the
functions to which the standard header/footer function is assigned.

CA 2E ships predefined standard header/footer functions, but you can also create and
customize your own. The easiest way to do so is to make a copy of one of the standard
header/footer functions and modify the copy.

132 Column Screen
This option specifies whether the display terminal, at which the display is shown, is 132
characters wide.
m [fYis specified, the terminal supports 132-character displays

m [f left Blank, the terminal supports 80-column displays

Note: For a device function to allow 132 columns, its standard header/footer must have
this option set to Y.

Chapter 7: Modifying Function Options 251

Identifying Standard Header/Footer Function Options

Enable Selection Prompt Text

This option specifies whether a default prompt message should appear on the device
design for function keys and subfile selection text.

m [f 1is specified, a one-line prompt message appears for both function keys
m [f 2is specified, a two-line prompt message appears for both function keys

m [f left Blank, the prompt messages are absent

Allow Right to Left/Top to Bottom

This option specifies whether bi-directional support is incorporated in the function.

m [fYis specified, cursor movement for input-capable text fields is right to left and top
to bottom on the panel

m [f left Blank, cursor movement is from left to right and top to bottom in
input-capable fields

Function Options for Setting Header/Footer Defaults

The following function options determine the type of header/footer that is defined and
the implicitly- selected default for that header/footer type.

m Use as default for functions
m |s this an Action Bar (Y), and the Default (D)
m |s this a Window (Y), and the Default (D)

The implicitly-selected default header/footer assigned to your functions is indicated on
the Edit Function Options panel as follows.

- Implicitly set by mdl default

If you assign another standard header/footer function to your function, it is indicated on
the Edit Function Options panel as follows.

- Explicitly selected

Note: CA 2E may automatically change implicitly-selected header/footers if you change
the YSAAFMT model value or the YWSNGEN model value.

For more information on implicitly-selected header/footers, see Design and Usage
Considerations and the Examples later in this chapter.

252 Building Applications

Identifying Standard Header/Footer Function Options

Use As Default for Functions

Is This an Action Bar

Is This a Window

This option applies only if the model value YSAAFMT is *CUAENTRY and the model value
YWSNGEN is set to *NPT. It specifies whether this standard header/footer is assigned to
functions as the implicitly-selected default.

If Y is specified, this standard header/footer is assigned to functions as the
implicitly-selected default

If left Blank, this standard header/footer is not assigned to functions as the
implicitly-selected default

This option specifies whether the function to which this standard header/footer is
assigned contains an action bar.

If Y is specified, the function contains an action bar.
If N is specified, the function does not contain an action bar.

If D is specified, the function contains an action bar. In addition, if the YSAAFMT
model value is set to *CUATEXT, all panel-based function types other than SELRCD
has this standard header/footer assigned as the implicitly-selected default.

This option specifies whether the functions to which this standard header/footer is
assigned contains a window.

If Y is specified, the function contains a window.
If N is specified, the function does not contain a window.

If D is specified, the function contains a window. In addition, if model value
YSAAFMT is set to *CUATEXT, SELRCD functions has this standard header/footer
function assigned as the implicitly-selected default.

Chapter 7: Modifying Function Options 253

Identifying Standard Header/Footer Function Options

Design and Usade Considerations

Examples

Following are points to consider if you want to customize or change the way CA 2E
assigns standard header/footers for your functions.

m Astandard header/footer function can be an action bar, a window, or neither. It
cannot be both an action bar and a window.

m To create a standard header/footer function with neither an action bar nor a
window, set both the following function options to N.

— Isthis an Action Bar
— Isthisa Window

m There can be only one default standard header/footer function for each
header/footer type. In other words,

- Only one standard header/footer function can have the Use as default for
functions option set to v.

- Only one standard header/footer function can have the Is this an Action Bar
option set to D.

— Only one standard header/footer function can have the Is this a Window option
setto D.

If you set a new standard header/footer to be a default, CA 2E automatically resets
the corresponding function option for the previous default header/footer function
so it is no longer the default.

m All existing functions that have implicitly- selected header/footers are always
assigned to the default header/footer. If you modify the default header/footer, CA
2E immediately reassigns the implicitly-selected header/footers. This also occurs if
you change the YSAAFMT model value and may occur if you change the YWSNGEN
model value or the Workstation Implementation function option for a function. See
the examples at the end of this topic.

To prevent this, you can explicitly select the same or another standard
header/footer for any function using the Edit Function Options panel.

Suppose the YSAAFMT model value is set to *CUAENTRY and the YWSNGEN model value
is set to *NPT. In addition, suppose the standard header/footer function options are set
as follows:

Standard Header/Footer Use as default Is this an Is this a

Functions for function Action Bar Window
options option? option?

Header/Footerl Y N N

254 Building Applications

Identifying Standard Header/Footer Function Options

Example 1

Example 2

Example 3

Standard Header/Footer Use as default Is this an Is this a
Functions for function Action Bar Window
options option? option?
Header/Footer2 blank D N
Header/Footer3 blank N D

The following examples all refer to this basic scenario.

With these settings, all functions created have Header/Footerl specified as the
implicitly-selected default.

If you change the YSAAFMT model value to *CUATEXT, all functions other than SELRCD
have Header/Footer2 assigned as the implicitly-selected default. SELRCD functions will
have Header/Footer3 assigned as the implicitly-selected default.

If you change the YSAAFMT model value to *CUATEXT, create a new Header/Footer4,
and set it to be the default action bar, the standard header/footer function options
changes as follows:

Standard Use as default for Is this an Action Is this a Window
Header/Footer function options Bar option? option?
Functions

Header/Footerl Y

Header/Footer2 blank

21022

N
Y
Header/Footer3 blank N
D

Header/Footer4 blank

Note: CA 2E has automatically reset the Is this an Action Bar option for Header/Footer2
to Y. All functions other than SELRCD have Header/Footer4 assigned as the
implicitly-selected default. SELRCD functions still have Header/Footer3 assigned as the
implicitly- selected default.

Chapter 7: Modifying Function Options 255

Chapter 8: Modifying Function Parameters

This chapter identifies the basic properties and the roles of function parameters and
explains how to define them for functions. This chapter also explains how to use arrays
as parameters.

This section contains the following topics:

Understanding Function Parameters (see page 257)
Identifying the Basic Properties (see page 257)
Defining Function Parameters (see page 271)

Understanding Function Parameters

Function parameters specify which fields can be passed between the calling and the
called functions. Each call can pass different values in these fields, but the definitions of
the fields themselves remains the same. You assign the parameter roles, which direct
the function to use that parameter m in a specific way.

Identifying the Basic Properties

Name

Usade Type

Parameters have the following four basic properties:

® Name
m Usage
m Role

m Flag error status

Function parameters are defined by reference to the field from which they receive or to
which they return a value.

A parameter’s usage definition determines how the parameter is allowed to be used.
Parameters can be used in one of four ways depending on how they are received from
or returned to the function. The direction of movement is always viewed from outside
the function whose parameters are being defined. The usage types are as follows:

Chapter 8: Modifying Function Parameters 257

Identifying the Basic Properties

Input Only

Output Only

Both (Input/Output)

Neither

A value is passed into the function when the function is called, but the function does not
change this value and the same value is returned.

A value is returned from the function for the parameter when the function completes.
Any initial value passed in this variable is set to blank or zero at the start of the function.

A value is passed into the function for the parameter when the function is called and a
value, possibly different, is returned to the calling function when the function completes
processing.

No value is passed into the function for the parameter nor is a value returned for the
parameter when the function ends. Neither parameters are available for use as local
variables within the function.

Note: Neither parameters are, in some instances, preferable to WRK context variables.
WRK context variables are global to the function and can be updated inadvertently from
internal functions within the main external function. The local nature of Neither
parameters avoids this potential problem.

The following table shows the types of function parameter usage.

Parameter type Passed in Returned MAP
Input Y N Y
Output N Y N
Input/Output Y Y Y
Neither N N Y

258 Building Applications

Identifying the Basic Properties

Flag Error Status

Flag error status specifies whether a calling function should indicate that an error, which
occurs in the called function, is associated with the parameter field. If so, the field is
highlighted on the display of the calling function if the parameter field in the called
function returns a non-blank return code.

Flag error status applies only to the following function types:
m SNDERRMSG (send error message)

m EXCMSG (execute message)

m Any external function

Send Error Message specifies that an error message be sent to a calling function. The
Send Error Message function is attached to a CA 2E shipped file called ¥ MESSAGES.

For more information on function types and external functions, see the chapter
"Defining Functions."

By default, all parameters of the called function that ended in error are highlighted if
they appear on a display. You can override this to suppress error flagging for a
parameter by altering the default attributes for fields in error on the Edit Screen Field
Attributes panel.

Identifying Default Parameters

Certain standard functions have predefined default parameters. When you create any of
the function types, the appropriate default parameters are automatically created.

Function Default Parameters Usage

CHGOBJ All fields from update index of based-on file I

DLTOBJ Key fields from update index of based-on file I

RTVOBIJ Key fields from the associated access path I

SELRCD Key fields from the update index of based-on file B
Key: | = Input Only Usage

B = Both Input and Output Usage

Chapter 8: Modifying Function Parameters 259

Identifying the Basic Properties

Identifying the Return Code

All standard function types other than EXCUSRPGM and EXCUSRSRC have an implicit
parameter, the return code. The return code is used to inform the calling program of the
circumstances under which the called program is exited. The return code is not shown
on the Edit Function Parameters panel but is automatically declared in the generated
source code as the first parameter.

Therefore, when calling your application program from a menu or a command line you
must always specify a parameter for the return code. This parameter must be the first
parameter.

For example, when calling a function from a command line:
CALL ABCDEFR ' '

Note: You can also use the Call a Program (Y2CALL) command to call the function. This
command is especially useful if the function’s parameter interface is complex or has
changed. It determines the parameters, including the return code, required by a
function directly from details contained in the model. You can provide values for all
input-capable fields and you can reuse these values for subsequent calls.

For more information on the Y2CALL command, see the Command Reference Guide.

You can retrieve or change the value of the return code parameter within the action
diagram of a function by referencing the PGM context field *Return Code. This field can
be set by CA 2E to one of its defined conditions, such as, *Record not found. The
conditions that are supplied for the *Return Code field are:

m *Data update error

m *Normal

m *Record already exists
m *Record does not exist
m *Substring error

m *User Quit requested

You can test against any of these supplied conditions or you can add other conditions to
the list.

The best way to check for not equal to *NORMAL can be done using a CASE condition
with an *OTHERWISE or by using a compound condition.

For example:

260 Building Applications

Identifying the Basic Properties

.-CASE

-PGM.*Return Code is *NORMAL

Print Customers - Customer *
-*QTHERWISE

Print Customers Credit - Customer *
-ENDCASE

Understanding the Role of the Parameter

Map Parameter

Restrictor Parameter

The role of a parameter specifies how the parameter is used in the function into which it
is passed. Each category of parameter role applies to certain standard function types.
The parameter roles are as follows:

This parameter is automatically moved to a corresponding field on the receiving
function’s panel design. If the field does not exist on the device design, it is added to it.
Specifying fields as mapped Neither parameters is a way of adding fields to a panel
design without the need for passing them into the function. The Map option is ignored
for reports and functions that do not have an associated device design.

Note: If you make a change to the parameter entry on the Edit Function Parameters
Detail panel, the entry defaults to the Map role.

This parameter is used to restrict the records from a database file that can be displayed,
changed, or printed by the function. Restrictor parameters must be key fields on the
access path to which their function attaches and can only be used hierarchically; that is,
major to minor key sequence.

A minor key can only be a restrictor parameter if all keys major to it are also restrictor
parameters. Restrictor parameters are automatically mapped and default to output on
the panel, but may be changed to input on DSPFIL, SELRCD, and EDTFIL function types.

For example, a function that displays a list of records (such as DSPFIL) could allow the
user to select a particular record with a line selection option. The keys of the selected
record could be passed as restrictors to another function (such as EDTRCD). The called
function then process only the selected record.

Chapter 8: Modifying Function Parameters 261

Identifying the Basic Properties

Using Restrictor Parameters

The following examples show the effect of using restrictor parameters on single-record

display styles and on multiple record display styles.

For example, if a Division is defined by the following relations:

FIL Company REF Known by FLD Company code CDE
FIL Company REF Has FLD Company name TXT
FIL Division REF Owned by REF Company FIL
FIL Division REF Known by FLD Division code CDE
FIL Division REF Has FLD Division name TXT
FIL Division REF Has FLD No of employees NBR

Single-Record Panel Design Without a Restrictor

If an Edit Record function is specified to edit the Division file without a restrictor
parameter being declared, the default device design for the key panel would appear as

follows. All of the key fields are input capable.

Key

values |

[
[

YOU WRKSTN1
EDIT A DIVISION - KEY PANEL

Company code: BBBB

Division code: BBBEBBBB

F3=Exit F9=Add record

262 Building Applications

Identifying the Basic Properties

Single-Record Panel Design with a Restrictor

If the Company code is specified as a restrictor parameter, the Company code no longer
appears as an input-capable field but becomes protected, as it is assumed that its value
is being provided as an entry parameter:

YOU WRKSTN1 10/05/92
EDIT A DIVISION - KEY PANEL

Restrictor | Company code: 0000

Key | Division code: BBBBBBB

F3=Exit F9=Add record

Multiple-Record Panel Design without a Restrictor

The effect of a restrictor on a multiple-record (subfile) panel design is similar. Consider
that an Edit File function edits a Division file. If no restrictor parameter is specified, the
default device design appears as follows:

YOU WRKSTN1 10/05/92

EDIT DIVISION
Positionin | Company BBBB
g code:
values |

Division code: BBEBBBBB
Type options, press Enter.

Company Division Division

SFL ? code code name

record [| B BBBBB BEEEBEEE BEBEEEBBEEBBEEEBBEEEBEBEBEBB
B BBBBB BEEBEBBEBE BBEBEEEBEEBEEEBBEBBBBEBBBB
B BBBBB BBEBBBBB BBBBEBBEBBEBBBEEBBBEBBBBEBBBB
B BBBBB BEBBBBB BBBEBBEBBEBEBBEEBBBEBBBBBEBBBB
F3=Exit

Chapter 8: Modifying Function Parameters 263

Identifying the Basic Properties

Each subfile record contains all the fields from the underlying Division file.

Multiple-Record Panel Design with a Restrictor

If a Company Code field was specified as a restrictor parameter, the Company Code field
no longer appears on each individual subfile record but would instead be shown on the
subfile control record. The Company Code field is protected, as it is assumed that its
value is being provided as an entry parameter.

YOU WRKSTN1 10/05/92

EDIT DIVISION

Restrictor [| Company code: 00000

Positioning

value. [l Division code: BBBBBBB
Type options, press Enter.

Division Division

SFL ? code name

record [| B BBBBBBB BEBBEBBBBBBBBBEBBEBBEBEBBB
B BBBBBEB BEBBEBEBBBBBBBEBBEBEBEBBBBEB
B BBBBBEB BEBBEBEBBBEBBEBBEBBEBBBEB
B BBBBBEB BEBBEBBEBBBEBBBEBBEBBEBBBBBEB
F3=Exit

Note: You can override the restrictor on this panel to be input capable.

Virtual Fields and Restrictors on Subfiles

Some special considerations arise for subfile displays when there are virtual fields on the
subfile record associated with a relation for which all of the keys are specified as
restrictor parameters.

The following examples show the effect of restricting and not restricting a subfile’s
virtual fields onto the header format.

Virtual fields
Key fields associated with keys

| BBBB BB OO0O0O000000 666.66 BB
| BBEBB BB OOO0O0O0O00O00 666.66 BB
| BEBB BB OOOOO000000 666.66 BB
| BEBB BB OOO0000000 666.66 BB

264 Building Applications

Identifying the Basic Properties

Different results are obtained if the virtual fields are present in the access path of the
function due to the virtualization of fields that are virtualized in a related file. For
example, Customer Name is a virtual on Order Header and is re-virtualized to Order
Detail. Two possible differences are:

The virtual fields are restricted: They are removed from the individual subfile records
and are placed on the subfile control with the restricted fields. This happens if the
virtual fields associated with the keys also are restricted.

Restricted keys Virtual fields are also restricted

0000 00 0000000000 666.66
| BBB

BBB
| BBB

The virtual fields are not restricted: They remain on the individual subfile records. This
happens if the fields are defined as virtual fields on the access path of the function file
but are not present on the access path of the referenced file that is restricted.

Nonirestricted keys

BBIBB BB
| OOOO0000000 666.66 BBB
| OOO0000000 666.66 BBB
| ©O00000000 666.66 BBB

Virtuals are not restricted

Chapter 8: Modifying Function Parameters 265

Identifying the Basic Properties

The access path combinations for restrictor parameters are:

FILE &
A Owvned by B
Wt b2
Pl Has al
o
Access path 41
A Dwvned by B
Wt b2
A Has al
(1] (2]
FILE B
B HKnownbky B
B Has b2
b
Access path B1 Access path B2
B Krnowen by B B Knowen by |
B Has h2

Al to Bl

Field b2 is present on both the referencing (A1) and referenced (B1) access paths.
Virtual fields are restricted in functions based on access path Al.

Al to B2

Field b2 is present on the referencing access path (A1), but not on the referenced access
path (B2). Virtual fields are not restricted in functions based on access path Al.

266 Building Applications

Identifying the Basic Properties

Example of Virtual Restrictor Usade

In the following example, the Customer Name is specified as a virtual field on the Order
Header and is revirtualized to the Order Detail file.

Order Header
Order Header

Order Detail
Order Detail

Known by
Refers to
VRT
Known by
Refers to
VRT
VRT
VRT

Order No
Customer
Customer Name
Order Line No
Item

Item Description
Customer No
Customer Name

This example creates a device design over Order Detail, where Order No. is a restrictor

as follows.

Device Design with Restricted Virtual Fields

Customer name is restricted too.

YOU WRKSTN1 10/05/92

EDIT DIVISION Your Model

Restrictor [| Order No: 00000 Customer Name: O0O0Q00000000

Positioning

values [| Order Line: BBBBB
Type options, press Enter.

SFL ? Order Line Item Description

record [B BBBBB BEBEBEBE BEBEBEBEBEEBEEBEBEBEEBBBBBB
B BBBBB BEEBEEBEE EBEBEBEEEEEEBEEEBEBEEEBEBEB
B BBBBB BBEBBBBBE EBBEBEBEBEBBEBBBBEEBBBBBB
B BBBBB BEBBBBEBE EBBEBEBEBEBBEBBBBEEBBBBBB
F3=Exit

If the Customer Name field is not present on the access path of the referenced file,
Customer Name is no longer being included on the subfile control.

However, if Order No. is not a restrictor, the device design would be as follows.

Chapter 8: Modifying Function Parameters 267

Identifying the Basic Properties

Device Design Without Restricted Virtual Fields

Restrictor [
Positioning

values

SFL
record

[

[

EDIT DIVISION
Order No: BBBBB

Order Line: BBBBB
Type options, press Enter.
Customer

? Order Line Name

B BBBBB 00000
B BBBBB 00000
B BBBBB 00000
B BBBBB 00000
F3=Exit

YOU WRKSTN1 10/05/92
Your Model
Customer Name: 000000000000

Description

BEBEBEBEBEBBEBEBEEBEBBBEB
EEBEBEBEBEEEBEBEEEBEBEBEBEB
BEBEBEBEBEBBEBEBBEEBEBBBEB
EEBEBEBEBEEBEBEEEEBEBEBEB

I
Customer name appears on each individual record

268 Building Applications

Identifying the Basic Properties

Positioner Parameter

Vary Parameter

This parameter is used to position a function to start reading records from a database
file at a particular record. Positioner parameters can be used by themselves or in
conjunction with restrictor parameters. They must be key fields on the access path to
which their function attaches and can only be used hierarchically.

For example, a minor key can only be a positioner parameter if all major keys to it are
also positioner or restrictor parameters. Positioner parameters are automatically

mapped and can be either Output or Both on the panel.

The following table is an example of the use of positioner parameters.

FIL Company REF Known By FLD Company code CDE
FIL Company REF Has FLD Company name TXT
FIL Division REF Owned by REF Company FIL
FIL Division REF Known By FLD Division code CDE
FIL Division REF Has FLD Division name TXT
FIL Division REF Has FLD No of employees NBR

If you define a PRTFIL function based on a retrieval access path over the division file
(such as, with keys Company Code and Division Code fields) and if you want to specify
selection you could either:

® Make both Company Code and Division Code positioner parameters in order to
read all records starting at specified values for both key fields

® Make Company Code a restrictor but Division Code a positioner parameter in order
to read all records for a specified Company file starting at a given division

This parameter can have a varying length. The vary parameter is useful when interfacing
with user-written subroutines and programs. Domain checking is ignored.

Vary parameters are valid on functions that generate an external high-level language
program, that is RPG or COBOL. You need to ensure that the parameters function
properly if the domains do not match.

Chapter 8: Modifying Function Parameters 269

Identifying the Basic Properties

Allowed Parameter Roles

The following table shows the allowed parameter roles for the standard functions.

Function Map Restrictor Positioner Vary
(Keys Only) (Keys Only)

PMTRCD Y - -

EDTRCD(1,2,3) Y ;]

DSPRCD(1,2,3) Y - -

SELRCD Y1l - -

DSPFIL Y1l - -

EDTFIL

<
[EnN
'
'

EDTTRN

<|=<|=<|=<|=<|=<|=<]|=<

DSPTRN

*

PRTFIL

PRTOBJ

RTVOBI -

CRTOBIJ -

CHGOBIJ -

*
<|=<|=<|=<|=<|=<]|]=<]=<
=<
1

DLTOBJ -

Ll
1
<

EXCEXTFUN -

EXCINTFUN - - - -

EXCUSRSRC - - - Y

1

Ll

1
<

EXCUSRPGM

Notes:

* Denotes that the map is allowed but does not add the parameter to the device
design.

1 Indicates that you can override the restrictor parameter, which is normally
output only, to be input capable.

270 Building Applications

Defining Function Parameters

Defining Function Parameters

To define a parameter for a function, specify the field that is passed to or from the
function with one of these two procedures:

m Specify the parameters from the Edit Function Parameters panel.

m Specify the parameter in the action diagram when you specify the link between the
functions.

Defining Parameters with the Edit Function Parameters Panel

The Edit Function Parameters panel defines the parameters that are passed to the
function by the calling function. How the parameter is used in the called function
depends on the called function’s type or the processing specified by that function.
Parameters can either be defined as a list of specific fields or as selections of fields from
a list of access paths, arrays, or files.

To access the Edit Function Parameters panel

1. View the functions. From the Edit Database Relations panel, type F next to the
selected file, and then press Enter.

The Edit Functions panel appears.

Chapter 8: Modifying Function Parameters 271

Defining Function Parameters

2. View the parameters, type P next to the selected function, and then press Enter.

The Edit Function Parameters panel appears:

Op: 2717711 15:20:16
EDIT FUNCTION PARAMETERS

Function name. . : Retrieve customer records Type : Execute external function
Received by file : Customer Acpth: x*NONE
Passed Pgm Par
? File/xFIELD Access path/Field/Array Ctx Ctx
xFIELD Customer number FLD
XArrays Customer Array

Values
One parameter per field: FLD
One parameter for all fields: RCD Pass as Array:
One parameter for key fields only: KEY Pass as Array:

SEL: Z-Parameter details X-Object details D-Delete parameter N-Narrative
F3=Exit F5=Reload F23=More options

Use one of the following methods to specify the parameters:

To specify an individual field

1. Type *FIELD or *F in the File/*FIELD column.

2. Type the name of the field in the Access path/Field/Array column.
By entering ? this field can be used for prompting.

The Passed field defaults to FLD.

To specify a set of fields from a file, access path, or array:

1. Type the name of the file in the File/*FIELD column. For arrays, type *Arrays (or
*A).

By entering ? this field can be used for prompting. A * defaults to the name of the
file over which the function is built.

272 Building Applications

Defining Function Parameters

Type the name of the access path or array name in the Access path/Field/Array
column.

By entering ? this field can be used for prompting.

Note: If you use *NONE as the access path then all fields, actual and virtual, are
associated with the file are available for selection. This removes the need to tie the
parameter entry to a specific access path and can reduce the impact of a change to
the definition. This approach is particularly relevant when a subset of fields is
selected.

Type the value that the field is passed as:
FLD

Each specified field is passed as an individual parameter. This must be specified
for *FIELD or *NONE parameter lines.

RCD

A single parameter with the length of the specified access path is passed. The
parameter contains space for all the fields associated with the access path,
which can individually be specified as parameters.

KEY

A single parameter with the length of the combined keys of the specified access
path is passed. The parameter contains space for all the key fields that can be
individually specified as parameters.

Enter Y or leave a blank value for the A (Pass as Array) field.
The following situations apply when using the A field:
m If the function is not EXCEXTFUN or EXCUSRPGM, the field is not available.

m The new ‘A’ (Pass as Array) field is available for all EXCEXTFUN and EXCUSRPGM
parameters. However, if Y is specified for a parameter that is not an array
based on the *Arrays file, or when the parameter is passed as FLD, then an
error message is sent.

m Yisonlyvalid when the parameter is an array based on the *Arrays file, and
only when the parameter is passed as RCD or KEY.

m When you model in the action diagram of function A a call to function B, if a
parameter is passed as an array on A it must be passed as an array on B.

m Nofields can be dropped on a parameter being passed as an array.

m Though the usages of the subfields on a parameter passed as an array can be
mixed, the usages must be compatible, such that the calling function can call
the called function

Chapter 8: Modifying Function Parameters 273

Defining Function Parameters

5. Define the specific fields that are to be passed from the file, access path, or array on
the Edit Function Parameter Details panel.

m For both *FIELD and other parameter entries, define the role and usage of the
parameter.

m You can adjust the sequence of the entries by keying sequence numbers on
each parameter line.

Non-unique Sequence Numbers

Sequence numbers do not need to be unique for a function where the Duplicate
Parameters Option is set to N.

Identifying Functions with a Non-unique Parameter Sequence

Use the YCHKFUNPAR command to analyze a model and identify all functions that
exhibit specific parameter interface problems. For example, when you have non-unique
sequence numbers on the parameter interface of a function where the function option
Duplicate Parameters is set as Y.

Resolving Function with a Non-unique Parameter Sequence Number

To rectify a function with a non-unique parameter sequence number

1. Access the EDIT FUNCTION PARAMETERS panel and change the sequence numbers
to be unique.

QPADEVOBDOJ 4/14/11 8:13:53
MET
Verify account : Execute external function
account th: =NONE

Passed

File/*FIELD A 255 [q y
account Retrieval index
account Retrieval index

N-Narrative

274 Building Applications

Defining Function Parameters

2. Access the Action Diagram of the function and ensure that all parameter contexts
are modified appropriately to point to the correct parameter.

Invalid Duplicate Parameter fields

When a function has its Duplicate Parameters option set to N, each parameter field
should be unique, regardless of the usage. The only exception is that a field can appear
once for Input and once for Output.

There are two scenarios where a violation of this restriction and exception can occur:

m Earlier, the user was only warned after violating the change, rather than being
prevented from the violation.

m Now it is possible to create a function with an invalid parameter interface. This can
occur when you turn the DUPLICATE PARAMETERS function from Y to N, and any
(previously valid) duplicate parameters are not modified appropriately.

In the following example, the function Verify Item has two identical parameters: Item,
Retrieval index, passed as RCD with seq=1 (PR1) and seq=2 (PR2). The subfields on the
Item file are: Item code, Item description, Item Price and Item barcode, which are all
passed as Both on PR1 and PR2.

Because the Duplicate Parameters Option is set to Y, this is a valid operation:

Op: COCSIO1 QPARDEVOROJ 4/14/11 9:04:17
EDIT FUNCTION PRARAMETERS SB Dl

ion name. . : Verfify Item . Execute external function
by file : Item pth: xNONE
P = Pgm

D Ctx
Retrieval index PR
Retrieval index PR2

If the Duplicate Parameters Option is changed from Y to N, then the parameter interface
becomes invalid. However, you will not receive a warning or error message.

Chapter 8: Modifying Function Parameters 275

Defining Function Parameters

Identifying Functions with Invalid Duplicate Parameter Fields

Use the YCHKFUNPAR command to analyze a model and identify all functions that
exhibit specific parameter interface problems. Identifying invalid duplicate parameter
fields on the parameter interface of a function where Duplicate Parameters is set to N is
one of the issues where YCHKFUNPAR is helpful.

Rectifying Functions with Invalid Duplicate Parameter Fields

To rectify a function with invalid Duplicate Parameter fields, you must modify the
function so that it does not violate the restriction and exception.

When a function has the Duplicate Parameters option set to N, each parameter field
should be unique, regardless of the usage. The only exception is that a field can appear
once for Input and once for Output.

There are two approaches to rectify this situation:

m Change the function option Duplicate Parameters to Y.

Note: While this approach immediately makes the parameter interface valid, you
must update any reference to PAR context in the action diagram to refer to the
appropriate duplicate parameter PR1 through PR9 context.

m Leave the Duplicate Parameters setting as is, but modify the usages of parameter
fields so that the restriction and exception are not violated, which is detailed in the
following examples.

276 Building Applications

Defining Function Parameters

To Rectify Functions with the Duplicate Parameters Option set to Y then set to N
1. Verify ltem has Duplicate Parameters set to Y.

Op: COCSIO1 QPADEVEROJ 4/14/11 9:37:35
EDIT FUNCTIOMN PARAMETERS SBC368MDI

ion nar . ¢ Verfify Item e : Execute external function
d by file : Item) *NONE
Pass Pgm
FIELD \ce th/Fi \rray Ctx
PR1
Retrieval index PR2

One paramete
for all fiel
for key fields only:

Chapter 8: Modifying Function Parameters 277

Defining Function Parameters

After the Duplicate Parameters function option has been changed to N, no warning
is sent. However, the parameter interface is invalid because subfields appear on
two different parameters with usage Both, as shown in the following example:

Op: COCSIO1 QPADEVOBBJ 4/14/11 9:38:55
EDIT FUNCTION PRRAMETERS SBC3

name. . @ Verfify Item . Execute external function
by file : Item Acpth: =NONE
5
File/*FIELD
Item
I[tem

Access path/Fiel

Retrieval index
Retrieval index

2. Complete one of these steps:
m Remove the second parameter entirely.

m Change the usages of the first parameter to input and the usages of the second
parameter to Output.

278 Building Applications

Defining Function Parameters

3. Specify Input for all the fields on the first parameter:

Op: COCslIol QPADEVEERJ 4/14/11 9:42:50
EDIT FUNCTION PARAMETER DETRILS SBC368MDI
ion name. . : Verfify Item : Execute external function
; Item th: Retrieval index

Item I sed as: RCD

Flag error

Item code
Item description
Item price

Item barcode

I-Input, O0-Output, B-Both, N-Neither, D-Drop.
R-Restrict, M-Map, V-Vary length, P-Position. Err

4. Specify Ouput for all the fields on the second parameter:

. COCsIol QPADEVO0ROJ 4/14/11 9:43:14
EDIT FUNCTION PARAMETER DETAILS SBC368MDL
Function name. . : Verfify Item Type : Execute external function
: File Item 11 Retrieval index
Item .

Flag error
Item code
Item description
Item price
Item barcode

I-Input, O0-Output, B-Both, N-Neither, D-Drop.

R-Restrict, M-Map, V-Vary length, P-Position. Error: E-Flag Error.

Chapter 8: Modifying Function Parameters 279

Defining Function Parameters

5.

This parameter interface is now valid.

Visit the action diagram and ensure that the parameter contexts are properly
selected.

Defining the Parameter’s Usage and Role

After you specify the parameter, you can define the parameter’s usage and role on the
Edit Function Parameter Details panel.

The following situations with the functions EXCEXTFUN and EXCUSRPGM apply to this
panel:

When the function is not EXCEXTFUN or EXCUSRPGM, or when the function is
EXCEXTFUN or EXCUSRPGM but parameter is not passed as an array, RCD (ARRAY)
or KEY (ARRAY), then Number of Elements is not available.

When the function is not EXCEXTFUN or EXCUSRPGM, the Passed as field cannot
have values of KEY (ARRAY) or RCD (ARRAY).

When the function is EXCEXTFUN or EXCUSRPGM and the parameter is not passed
as an array, then the Passed as field cannot have values of KEY (ARRAY) or RCD
(ARRAY).

When function is EXCEXTFUN or EXCUSRPGM, parameter is passed as an
array(A="Y’), and the Edit Function Parameters panel (see page 271) indicates
Passed=RCD, then the Passed as field is RCD (ARRAY).

When function is EXCEXTFUN or EXCUSRPGM, parameter is passed as an
array(A="Y’), and the Edit Function Parameters panel (see page 271) indicates
Passed=KEY, then the Passed as field is KEY (ARRAY).

When function is EXCEXTFUN or EXCUSRPGM and parameter is passed as an array
(RCD or KEY), then the Number of elements displays the number of elements, as
defined on the array being passed. You can view and modify the array’s definition in
the *Arrays file.

280 Building Applications

Defining Function Parameters

EDIT FUNCTION
Function name.

To define the parameter’s usage and role

1. Zoom into the parameter, type Z next to the selected parameter, and then press
Enter.

The Edit Function Parameter Details panel appears:

Op: 2717711 15:24:03

PARAMETER DETAILS
Retrieve customer records Type : Execute external function

Received by file : Customer Array: Customer Array
Parameter (file) : xArrays Passed as: RCD (ARRAY)

Field

Customer
Customer
Customer
Customer
Customer
Customer

Number of elements : 100
Usage Role Flag error
number 0 MAP
prefix MAP
first name MAP
last name MAP
suffix MAP
since date MAP

SEL: Usage: I-Input, 0-Output, B-Both, N-Neither, D-Drop.
Role: R-Restrict, M-Map, V-Vary length, P-Position. Error: E-Flag Error.

F3=Exit

Notes:

m If you entered a file, access path, or an array, those fields are listed on this
panel. If the function has more than eight parameters, a parameter selection
field displays in the header.

m When Passed as=RCD (ARRAY) or =KEY (ARRAY), Number of elements displays
the Number of elements, as defined in the array being passed.

2. Enter the selected usage type in the Usage column, next to the parameter you are
defining. The options are:

= | (Input)
m O (Output)
m B (Both)
m N (Neither)
m D (Drop)

Chapter 8: Modifying Function Parameters 281

Defining Function Parameters

3. Enter the selected type of role in the Role column, next to the parameter you are
defining. The options are:

m R (Restrict)
m M (Map)
m V(Varylength)

m P (Position)

Parameter Usage Restrictions

When the function option Duplicate Parameters is set as Y, a parameter field can appear
on a function’s parameter interface. This can occur anytime from none (zero) to
numerous times with any parameter usage.

However, when the function option Duplicate Parameters is set as N, the following
situation applies:

m For a given function, each parameter field must be unique. In other words, a field
can only appear once regardless of usage (1,0,B, or N). The exception to this
situation is when a field can be defined separately once for input and once for
output, so it can appear two times.

Note: An attempted violation of this restriction and exception causes the error message
Y2V0214—-Parameter is duplicate to be sent.

Parameter Usage Matrix

When you have multiple items, certain combinations valid and certain combinations are
invalid. For invalid combinations, processing does not allow arrays to be passed in the
PAR context, where any subfield has usages on the Calling and Called program when the
Compatibility is *Invalid, as shown in the following usage compatibility matrix:

Calling Called Compatible
N N Valid

N I Valid

N o] Valid

N B Valid

| N Valid

| I Valid

I o] *Invalid

I B *Invalid

(o] N Valid

282 Building Applications

Defining Function Parameters

Calling Called Compatible
(0] | *Invalid

0] o] Valid

(0] B *Invalid

B N Valid

B | Valid

B o] Valid

B B Valid

Defining Parameters While in the Action Diagram

While in the action diagram, you can change the parameters of the function you are
editing using the following instructions. This is useful when adding additional
parameters while in the action diagram.

To define Parameters in the Action Diagram

1.

At the Edit Database Relations panel, type F to view the selected function. The Edit
Function panel appears.

View the Action Diagram. Type F next to the selected function. The Edit Action
Diagram panel appears.

In the Action Diagram, press F9. The Edit Function Parameters panel appears.

Define the parameter. Use the instructions in the two previous topics to define the
parameter and specify the role and usage.

Press Enter to accept the changes.

Press F3 to exit and return to the action diagram. The action diagram redisplays
with your changes.

For more information on action diagrams, see the chapter Modifying Action Diagrams
(see page 431).

Chapter 8: Modifying Function Parameters 283

Defining Function Parameters

Specifying Parameters for Messages

A parameter can be used within the text portion of a message. During execution, the
parameter’s value displays.

To specify a parameter for a message function
1. Use the previous instructions to get to the Edit Message Functions panel.

2. Type P next to the selected message function. The Edit Function Parameters panel
appears.

3. Define the parameter.

Note: When the data type of a parameter allows value mapping, such as all date
and time fields, the parameter is typically converted to its external format before
the message is sent. However, due to limitations within i OS, the parameter data for
the TS# data type is passed in its internal format, namely,
YYYY-MM-DD-HH.MM.SS.NNNNNN.

A parameter can be defined for a message function to allow substitution of the
parameter’s value into the text portion of the message identifier.

For example, to insert a field’s value in an error message when the credit limit is
exceeded for a customer, enter the following:

Credit limit exceeded for &1.

The parameter value &1 is inserted into the message text at execution time. You must
then define (&1) as an input parameter value to the message function. If this is an error
message, it also causes the field associated with the parameter (&1) to display using the
error condition display attribute for the field. By default, this is reverse image.

Using Arrays as Parameters

You can create elements in an array that are similar to parameter definitions, and you
can pass certain parameters as an array. For example, multiple instances of data can be
passed within the parameter.

By passing a parameter as an array, multiple instances of data can be passed in or out in
a single call to a function. For example, if a customer record structure is defined in the
Customer array on the *Arrays file, you can use that array to define a parameter to an
EXCEXTFUN or EXCUSRPGM being passed as RCD (ARRAY). Anywhere from a few to
thousands of customer records can be passed in that one parameter in one single
function call.

284 Building Applications

Defining Function Parameters

Arrays are defined over the *Arrays file and can be defined to contain any subset of the
fields in the model. Arrays can also be specified as parameters to any function. Using
arrays allows you to define any subset of fields as parameters to any function. Do this by
creating an array definition with the appropriate field and specifying it as a parameter
entry. This process is similar to using structure files for parameter lists but unlike
structure files, it is under the control of *PGMR.

Notes:

With this process, you use the array to supply a parameter definition and not the
data.

When generating functions using SQL, an array used to define the parameters for
CHGOBJ or CRTOBJ must have the fields defined in the same order as the update
access path.

You can pass an array as a parameter using one of two methods:

Multiple-instance array parameter: Describes when a parameter is passed as an
array (when the Pass as Array flag is set to 'Y'). The parameter contains multiple
instances of data, where each instance contains all the fields which are individually
specified as parameters using the parameter details display.

Single-instance array parameter: Describes when a parameter defined using an
array is not passed as an array (when the Pass as Array flag is not available or is set
to blank). The parameter contains all the fields which are individually specified as
parameters using the parameter details display.

For more information about arrays, see the chapter "Defining Arrays" in the Building
Access Paths Guide.

Multiple-Instance Restrictions

When passing a multiple-instance array the following restrictions apply:

Only EXCEXTFUN and EXCUSRPGM allow parameters to be passed as a
multiple-instance array.

Parameters can only be passed as a multiple-instance array when the parameter
structure is defined using an array based over the *Arrays file.

Parameters can only be passed as a multiple-instance array when they are being
passed as RCD or KEY.

No fields can be dropped on a parameter being passed as multiple-instance array.

Do not allow a multiple-instance array parameter in a function call, either in ARR
nor PAR context, except when calling an EXCEXTFUN or EXCUSRPGM, that has a
multiple-instance array parameter. Additionally, the call must be from the top level
action diagram of an EXCEXTFUN function.

The Submit job (SBMJOB) feature and Y2CALL command do not support function
calls that contain multiple-instance array parameters

Chapter 8: Modifying Function Parameters 285

Defining Function Parameters

When working with two functions, function A and function B, for example, you can
model in the action diagram of function A a call to function B, where B has a parameter
interface passed as an array. In this case these additional restrictions apply:

®m Function A must be of type EXCEXTFUN, and function B must be of type EXCEXTFUN
or EXCUSRPGM.

m The parameter context must be PAR, ARR, or PR1 through PR9 for Duplicate
Parameters, and the array name must exactly match on the parameter definition of
A and B.

m [f a parameter is passed as a multiple-instance array on A it must be passed as an
array on B.

m The multiple-instance array parameter must be passed as RCD on both A and B, or
KEY on both A and B.

m Although the usages of the subfields on a parameter passed as an array can be
mixed, the usages must be compatible, such that the calling function can call the
called function.

For more information, see the section Parameter Usage matrix (see page 282).

286 Building Applications

Chapter 9: Modifying Device Designs

The purpose of this chapter is to introduce you to CA 2E device designs, to explain
default device designs, conventions and styles, and to identify how to modify device
designs for panels and reports.

This section contains the following topics:

Understanding Device Designs (see page 288)

Basic Properties of Device Designs (see page 288)

Panel Design Elements (see page 293)

National Language Design Considerations (see page 299)
Device Design Conventions and Styles (see page 300)
System 38 (see page 303)

Standard Headers/Footers (see page 307)

Function Keys (see page 307)

Changing the Number of Function Key Text Lines (see page 316)
Editing Device Designs (see page 317)

ENPTUI for NPT Implementations (see page 345)

Editing Report Designs (see page 356)

Device User Source (see page 389)

Chapter 9: Modifying Device Designs 287

Understanding Device Designs

Understanding Device Designs

A device design specifies the layout of fields and constants on panels or report designs
that are associated with a function. There are two types of device designs:

m Panel designs, which specify the layout of fields and constants for interactive
functions

m Report designs, which specify the layout of fields and constants for report functions

Both types of device designs are similar in overall structure and are modified with
similar editors. However, some features apply to each specific device design.

If a CA 2E function has a device design associated with it, a default design is created by
CA 2E when you create the function. You can then modify this design.

CA 2E animation provides a direct link between CA 2E and CA 2E Toolkit prototyping
functions. This includes converting CA 2E device designs to Toolkit panel designs, full
access to all Toolkit editing and simulation functions, and the ability to return directly to
your CA 2E model. In addition, existing Toolkit navigation, narrative, and data are
preserved when you download a new version of a panel design.

The device design for a function on the iSeries is implemented as a single i OS device
file, a display file for panel designs or a print file for report designs.

A device design specifies the following:

m Which fields are present on the panel or report

m The position of fields and constants on the panel or report

m The circumstances under which particular fields are displayed

m Whether the field is input capable or protected (interactive panels only)

m Whether the field is optional or required (interactive panels only)

m The display attributes and editing of fields on the panel or report

Basic Properties of Device Designs

The three basic properties of device designs are design standard, formats, and fields.

288 Building Applications

Basic Properties of Device Designs

Design Standard

The overall layout of the design is determined by the standard header/footer selected
and the function type. Each device function is associated with a standard header/footer
function of type Define Screen Format (DFNSCRFMT) or Define Report Format
(DFNRPTFMT). These functions cannot stand-alone. You can only generate and compile
the functions to which they are attached. These header/footer functions should only be
defined on the CA 2E shipped file *Standard Header/Footer.

The standard header/footer functions specify a standard layout for device headers and
footers. You can create your own version of these functions that you attach to the
*Standard header/footer file using the Edit Functions panel and associate them with
your device functions using the Edit Function Options panel for each device function. To
create a new header/footer, you can copy and modify an existing one or add a new one.

When you define a new device function, a header/footer is automatically assigned to it
according to defaults specified by your model values or settings on the header/footer
functions.

For more information on standard header/footers, see the Standard Header/Footer
topic later in this topic.

Presentation Convention for CA 2E Device Designs

The appearance of fields on the device designs as illustrated in this chapter is denoted
by the following symbols.

Symbol Definition

I Input capable alphanumeric field

Output only alphanumeric field

B Update alphanumeric field
3 Input capable numeric field
6 Output only numeric field
9 Update numeric field

Chapter 9: Modifying Device Designs 289

Basic Properties of Device Designs

For example, on a panel design:

Enter Orders
Customer . . IIII 000000000000

Code Name Quantity Price
BBBBBB 00000000000 99999.99 666 .66
BBBBBB 00000000000 99999.99 666 .66
BBBBBB 00000000000 99999.99 666 .66

HHHO

And on a report design:

Print Orders
Customer . : 0000000000000000

Code Name Quantity Price
000000 00000000000 66666.66 666 .66
000000 00000000000 66666.66 666 .66
000000 00000000000 66666.66 666 .66

Total: 6666.66

Note: The symbols used in these examples are for this module only and do not
represent the actual method used in CA 2E.

Default Device Design

CA 2E provides default device designs based on the function options, standard
header/footer, function type, and access path. The first time you enter the device
design, CA 2E defaults the design for you according to the function type, access path,
model values, and function options.

290 Building Applications

Basic Properties of Device Designs

Device Design Formats

A function’s device design is created from a number of device design formats, each of
which specifies part of the device design. Each format is created from the fields of the
based-on access path and their associated text. Each format has:

m Device file format details—For each format, you specify format level information,
for instance, descriptive text and information as to how to position the format
relative to the other formats on the design. In the case of report design formats,
overflow criteria are specified. CA 2E supplies appropriate defaults for this
information.

m Device file format entries—The format entries constitute a list of all the fields that
appear in that format on the display panel along with information on how these
fields are to appear. Fields are positioned by default on the display in the order in
which their entries appear on the access path. You can change the order of entries,
the positioning, and remove or add entries.

Device Design Fields

CA 2E gets fields for a default device design from the following three sources:
m Header/Footer associated with a device function
m Access Path to which the function attaches

® Function parameters
Header/Footer Associated with a Device Function

The header/footer associated with a device function can contain a number of different
fields including panel title, job, and user. These fields are on the CA 2E shipped file
*Standard header/footer. You can add relations to this file if you need additional fields
but you are responsible for filling the fields with data.

Access Path to Which the Function Attaches
All fields in the access path are included on the device design by default when the
function is first created. If fields are added to the access path once the function is
created, they are available as hidden fields in the appropriate format and can be set to

input or output. They can then be moved to the appropriate place on the device design.

Note: Virtual fields are output only.

Chapter 9: Maodifying Device Designs 291

Basic Properties of Device Designs

Function Parameters
Function parameter fields with a role of mapped are included on display device designs.

If these parameter fields correspond to access path entries, the parameters are mapped
into the existing entry. If they do not correspond, a new entry is added to the panel.
You can also add the following types of fields to the individual device designs:

m Function fields

m Constants

292 Building Applications

Panel Design Elements

Panel Design Elements

The panel design usually consists of certain basic elements. These elements are based
on whether you use a multiple record function (EDTFIL, DSPFIL, or SELRCD), a single

Record F
(EDTTRN

unction (EDTRCD 1,2,3, DSPRCD 1,2,3, or PMTRCD), or a transaction function
or DSPTRN). The elements are listed below:

m Multiple Record Function

Standard Header
Subfile Control
Subfile Records

Standard Footer

m Single Record Function

Standard Header
Key Screen
Detail Screen

Standard Footer

® Transaction Function

Subfile Standard Header
Control
Subfile Records

Standard Footer

The following is a table of CA 2E display function formats.

Function Type HDR FTR SFLCTL SFLRCD DTL

PMTRCD

DSPRCD

EDTRCD

DSPFIL

EDTFIL

SELRCD

DSPTRN

EDTTRN

<|=<|=<|=<|=<|=<|=<]|=<
<|=<|=<|=<|=<|=<|=<]|=
<|=<|=<|=<|=<
<|=<|=<|=<|=

I

Chapter 9: Maodifying Device Designs 293

Panel Design Elements

Panel Body Fields

The fields that appear by default on the panel body are derived from the access path on
which the device function is based and from the function parameters. You can add
further fields.

When laying out default panels, CA 2E treats different types of fields in different ways:

1. Parameters. The role of the parameters has a significant effect on how they are
used on the default device design.

For more information about parameters, see the chapter, "Modifying Function
Parameters."

2. Key fields in the based-on access path. For most of the standard function types
there are constraints as to how key fields can be used. In some cases (for instance,
the EDTRCD key panel), they must be input capable; in others (such as on DSPFIL
subfile records), they must be protected. In DSPFIL, EDTFIL, and SELRCD function
types, positioner fields are also provided on the subfile control record for each key
field.

3. Non-key fields in the based-on access path. There are fewer restrictions as to how
non-key fields can be used. In the DSPFIL and SELRCD function types, selector fields
are also provided on the subfile control record for each non-key field.

General Rules for Panel Layout

The following information identifies features common to all display styles.

The first two lines of the panel designs contain a title and a status information defined
by an associated DFNSCRFMT function. When you create a new model, four layouts are
provided automatically:

m CUAEntry standard

m CUA Text Subset—Action Bars

m CUA Text Subset—Windows

Lines twenty-three or twenty-two contain text explaining the meaning of any function

keys. The format of this text depends on the value of the YSAAFMT model value, either
CUA Entry or CUA Text.

Messages appear on line twenty-four. Message clearing and resending is controlled by
the function options.

For more information about function options, see the chapter, "Modifying Function
Options."

294 Building Applications

Panel Design Elements

Panel Layout Subfiles

For subfile record fields, Column Heading text is used; for other fields, the Before text is
used.

A subfile selector field, *SFLSEL, is added to the beginning of the subfile record for
device designs that include subfiles, providing the appropriate function option is
specified.

Text that explains the meaning of the selection values is provided if appropriate. The
positioning of this text depends on the value of the Enable Selection Prompt Text
function option on the associated standard header function. This can follow the CUA
convention of text placed above the subfile text. If the Selection Prompt text is chosen
to be above the subfile, extra fields, such as *PMT, *SELTXT, are added automatically to
the display.

Panel Layout Field Usage
Any fields that are restrictor parameters are given an output-only usage.

For more information on restrictor parameters, see the chapter, "Modifying Function
Parameters."

If the function is an Edit function (EDTRCD, EDTFIL, EDTTRN), the non-key fields from the
access path on which the function is based are input capable on the panel unless they
are virtual fields or specifically protected. The key fields from the access path are only
input capable when records are being added.

If the function is a Display function (DSPRCD, DSPFIL, SELRCD, DSPSTRN), the fields from
the access path are output only.

Any fields used to control the positioning of a subfile display appear on the subfile
control record at the top of the display. These fields are input fields.

Virtual fields are added to the device design immediately after the real fields with which
they are associated. Virtual fields are always output only.

If a field is added to an access path, it is added to the panel design as a hidden field.

Chapter 9: Modifying Device Designs 295

Panel Design Elements

Default Layout of a Single-Record Panel Design

For single-record style panels (EDTRCD, DSPRCD, PMTRCD), CA 2E lays out the fields on
the panel design as follows:

m Key fields from the based-on access path are placed, one field per line, on both key
and detail panels.

m Non-Key fields from the based-on access path are placed, one field per line, on
detail panel designs.

m When the YCUAEXT model value is set to *DEFAULT, virtual fields are placed on the
same line as the real field with which they are associated. When the YCUAEXT
model value is set to *CUATEXT, the virtual fields indent three spaces on the
following line.

m Map function parameter fields that cannot be mapped to any existing field are
placed on the display before the other fields.

Key Panel *JOB *USER *DATE *TIME
*TITLE
Parameters [|Parameter X. : BBB
Parameter Y. : 000
Key fields [[Keyfield A. . : BBB
F3=Exit
Detail Panel [*JOB *USER *DATE *TIME
*TITLE
Parameters [|Parameter X. : BBB
Parameter Y. : 000
Fields from Key field A. . : 000
access path [|FieldB. ... : BBBBBBBB
FieldC. ... : 9999 Virtualfield : 0000000
F3=Exit

If there are more fields than will fit on a panel, the design may run over onto additional
pages.

296 Building Applications

Panel Design Elements

Default Layout of a Multiple-Record Panel Design

For multiple-record style panels (EDTFIL, DSPFIL, SELRCD), CA 2E lays the fields out on
the device display as follows:

*JOB *USER *DATE *TIME
*TITLE
Parameters -[| ParmX : BBB
ParmY : 000
mgonlng 1|FeldA : BEB Field B : BBBBBBBB FieldC : 999
Field Fisld Field Virtual field
A B (o] P

Fields from
access path

Non-restrictor fields from the format of the based-on access path are placed on
each subfile record, one field after another on the same line. Any fields, which are
defined as restrictor parameters are omitted from the subfile record and are,
instead, placed on the subfile control record.

Key fields from the access path that are also restrictors are placed on the subfile
control record.

For each key field in the based-on access path, a positioner field is placed on the
subfile control record. This field can be used to position the loading of the subfile to
start at a particular database record.

In DSPFIL and SELRCD function types, for each non-key field in the based-on access
path, a selector field is placed on the subfile control record. The nature of the
selection can be specified using the Edit Screen Entry Details panel.

Map function parameter fields that cannot be mapped to an existing field are
placed on the panel, one field per line, before the other fields.

BEE BBBBBBBB 9883 0000000000000
BEBEB BEBEBBBB 8838 0000000000000
BEEB BEBBBBBB 9898 0000000000000
BBE BEBBBBBB 9838 0000000000000

E———d

F3=Exit

If there are more fields than will fit on a panel, the design can extend past position 80 to
132, provided you have the appropriate terminals. If you require a 132 display, you need
to set the function option for 132 on your standard header/footer.

Chapter 9: Maodifying Device Designs 297

Panel Design Elements

Default Layout of a Single- and Multiple-Record Panel Design

For single- and multiple-record style panels (EDTTRN, DSPTRN) that must attach to an
SPN access path possessing two formats, CA 2E lays out the fields on the device design
as follows:

m The common major key or keys of the two formats of the based-on access path are
placed on the subfile control record

m Fields from the first format of the access path are placed on the subfile control
record one after another, on the same line

m All fields from the second format of the access path, apart from the shared key, are

placed on each subfile record, one field after another on the same line.

m Parameters that cannot be mapped to existing fields are placed on the subfile

control record, one after another on the same line.

*JOB "USER *DATE *“TIME
*TITLE
Parameters -[| ParamX : BBB ParamY : 000
Fieldsfrom -[|Figld P : BBBB FieldQ : BBBEBBBB VrtfidR : 00
flrst access
path format
Fleld Fleld Field Vidual field

i ? A B c S
Fieldsfrom] | BB BBEBBBEB 8999 0000000000000
second access | | BB BEBBBBBE 8939 0000000000000
path format | BB BBEEBBEB 9939 0000000000000

| BB BBEBBBBB 9959 0000000000000

298 Building Applications

National Language Design Considerations

National Landuade Design Considerations

You should consider the following when creating device designs and layouts for
applications that is used to support National Languages.

Allow 25% to 50% additional space in your device design for National Language
Support (NLS.

Avoid the use of multi-column headings
Do not use abbreviations or symbols
Follow CUA standards

Do not clutter panels; if necessary, use additional panels

The following design considerations can be affected when you develop your application
with NLS:

DBCS considerations
Bi-directional considerations
Presentation functions

Help Text

Note: When designing applications for National Languages, be sure to set the model
value YPMTGEN to *OFF until you are ready to generate your final production model.
This provides you with a performance benefit during function design. Once you are
ready to generate your final model, you can set it to *MSGID.

For more information on National Language Support and on changing or creating
applications in other languages, see Generating and Implementing Applications, in the
chapter, "National Language Support."

Chapter 9: Modifying Device Designs 299

Device Design Conventions and Styles

Device Design Conventions and Styles

These are the display conventions that are used to create default panel designs for
functions are:

m CUA Text
m CUAEntry

The display conventions affect various features of the panel design including:

m Position of the panel title and fields used on the panel header

m Default function keys (such as F3 for Exit)

m Position and style of the function key and subfile selector text
m Default display attributes of the fields in the screen body

m Style of dot leaders used to connect fields with their field text

m Use of windows and action bars

You can choose either CUA Entry or CUA Text using the YSAAFMT model value. CA 2E
generates the:

m CUA Entry standard when you set this value to *CUAENTRY

m CUA Text subset when you set this value to *CUATEXT, and System/38 standard
when you set this value to *S38

CUA Text

Selecting CUA Text as a default enables you to generate applications with windows and
action bars. Action bars use their associated pull-down menus. The CUA Text standards
provide panels (which have action bars) and windows (which do not have action bars)
for the generated application by default.

Note: Another term for action bar is menu bar.

300 Building Applications

Device Design Conventions and Styles

Windows

CUA Text Window

Action Bar

A window is an area of a panel with visible boundaries in which information appears.
Windows do not have an action bar. Windows can overlap on the panel, one panel
superimposed on another. Only the topmost window is active.

When you set the model value YSAAFMT to *CUATEXT, newly created device functions
default to action bars and windows for generated applications. Only Select Record
(SELRCD) functions default to a standard window header/footer but you can make any
other function a window by selecting a window header/footer for it from the function
options.

Header [
Subfile control |
Prompt Text |

Select Products
Product code.... ITII1I11

1=Select t
SFLrecord | electreqles

Opt Product Code Product Name
I 0000000 000000000000000

Footer [

Lo 0000000 000000000000000 !
. F3=Exit F4=Prompt :

An action bar appears at the top of a panel and provides a set of choices and actions
across the top of the panel. The choices allow end users access to the actions available
from the panel. Depending on the function, CA 2E provides logical defaults for action
bar choices, action bar mnemonics, pull-downs, associated descriptive text, and
pull-down accelerator keys.

When you set the YSAAFMT model value to *CUATEXT, all newly created interactive
device functions default to action bars, with the exception of SELRCD. SELRCD functions
default to the window header/footer.

Chapter 9: Maodifying Device Designs 301

Device Design Conventions and Styles

CUA Text Action Bar

Header | File fUnctions Help

Select Products

Product Product
Subfile [| Code Name
control ERERRR CETTTEEEEr el
PMT [| Selectltems,thenselectanaction
SFL [| Opt Product Code Product Name
record I 0000000 000000000000000
I 0000000 000000000000000

Footer [| F3=Exit F4=Prompt F10=Actions

CUA Entry

CUA Entry is a standard header/footer device format. Selecting a CUA Entry
header/footer gives you a panel that is designed to comply with IBM’s CUA ‘89 Entry
Model recommendations. The default header/footer for CUA Entry is *Std Screen
Headings (CUA).

302 Building Applications

System 38

CUA
*DATE *TIME
Header [Select Products
SFLCTL [Product code : 1111111
Type option, press Enter
Product Product
? Code Name
SFL [| T 0000000 000000000000000000000000000000
record I 0000000 000000000000000000000000000000
Footer [F3 =Exit F4=Prompt
System 38

CUA Device Design Extensions

CUA device design extensions consist of the following additional CUA design features
which are controlled by setting the model value YCUAEXT to *C89EXT:

m Automatic defaulting and alignment of right-hand side text—For input capable
fields in the generated application, CA 2E automatically supplies and aligns
right-hand side (RHS) explanatory text. RHS text does not appear on panel fields.
For the application user, this text indicates the allowed values. The text appears
aligned and to the right of the field, as shown below.

RI—iS text
1

Customercode . . . Code

Customer name . . . Text

Location. Code, F4 for list

Location name . . 000000000000
Customerdate. . . Date
Customer gender. . __ M-Male, F=Female

Chapter 9: Modifying Device Designs 303

System 38

m Padding of field constant or literal trailers (dot leaders) for left-hand side text—CA
2E automatically adds padding characters to the end of field left-hand side (LHS)
text labels for panel appearance and to facilitate translation into other languages.
The amount of padding depends on the label length, as described below. The
resulting length is rounded to an even number.

Field length Percentage
0-12 100%
12-29 50%

30-59 30%

60+ 0%

= Display of prompt instructions for device functions—With *C89EXT, prompt
instructions appear for all device functions.

Prompt Instructions Function Type

Type options, press Enter. EDTFIL, EDTTRN, DSPFIL, DSPTRN, SELRCD
Type choices, press Enter. EDTRCDn key, DSPRCD key, PMTRCD
Type changes, press Enter. EDTRCDn detail

Press Enter to continue DSPRCDn detail

m Indenting of virtual fields—For the initial layouts of Display Transaction (DSPTRN)
and Edit Transaction (EDTTRN) header formats, and for Prompt Record (PMTRCD),
Display Record (DSPRCD), and Edit Record (EDTRCD) detail formats, CA 2E makes
space for right-hand side text by moving the virtual fields associated with a foreign
key to the next line and indenting them three spaces, as illustrated below.

Right-hand-side text on same ling;
Virtual field on new line,
indented |

Customercode. | Code, F4 for list

Customer name. . . . : 0000000

304 Building Applications

System 38

Rightmost Text

CA 2E automatically supplies and aligns RHS explanatory text for input capable fields in
the generated application. RHS text does not appear for display fields. For the
application user, this text indicates the data field type and the type of data that should
be entered, such as text, number, and allowed values. The text appears aligned and to
the right of the field. RHS text appears when the YCUAEXT model value is set to
*C89EXT.

Panel Defaults for Rightmost Text

The defaults for RHS text are based on field attribute type and a number of CUA design
considerations such as role, entry type, field validation, and usage. The defaults are
automatic for new fields.

If the role of the field is to position information such as that of some fields on Display
File (DSPFIL), Edit File (EDTFIL), and SELRCD functions, a special value of Starting
Characters is used for the RHS text. If the field is a foreign key field, then F4 for list is
appended when YCUAPMT is set to *YES.

If a check condition is defined for the field, the RHS text is built from the allowed values
according to the condition type, the value length, and the number of values allowed.

For example, for a Status (STS) field with a List (LST) check condition with the two Value
(VAL) conditions Male and Female, the RHS text default is M = Male, F = Female.

The panel RHS flag defaults for a field according to the field‘s usage, as described in the
following table:

Type RHS Text Style Substitution Values
CMP &1 &2 &1 = *Relational operator
Example: &2 =Value
*GT5
RNG &1-&2 &1 = From value
Example: &2 =To value
1001-4005
LST (1) &1=&2,&3=84 &1 =Valuel
Example: &2 = Conditionl
M = Male &3 =Value2
F = Female &4 = Condition2
LST (2) Value, F4 for list -

Chapter 9: Modifying Device Designs 305

System 38

Type RHS Text Style Substitution Values
LST (3) &1, &2, &3, &4... &1 =Value 1,
Example: &2 =Value 2,
*ADD, *CHG, *DLT &3 =Value 3,
&4 = Value 4,

RHS text aligns two spaces after the longest field. CA 2E aligns RHS text when you create
a new panel and when you request field realignment at Edit Device Design. A field on
the Edit Device Design panel allows you to override the number of default spaces

between a field and the right-hand side text.

The CA 2E field defaults for RHS text are based on field attribute types, as described

below. The defaulting is automatic for new fields.

CA 2E Field Attribute

Right-Hand side text Default

CDE Alphanumeric code value Code

DT# ISO Date Date

DTE Date in system date format Date

NBR Pure numeric value Number
PCT Percentage or market index Percent
NAR Narrative text Text

Qry Quantity Quantity
STS Status Value

TM# ISO Time Time

TME Time in HHMMSS format HH:MM:SS
TS# ISO Timestamp Timestamp
TXT Object text Text

VAL Monetary value Monetary value
VNM Valid System name Name

PRC Price or tariff Price

IGC Ideographic text IGC Text

306 Building Applications

Standard Headers/Footers

Standard Headers/Footers

CA 2E provides a file containing standard header/footer fields to which any functions
defining headers and footers for use by device functions can be attached. CA 2E ships
five default functions with this file. Four of them are Define Screen Format
(DFNSCRFMT) functions. The other default header/footer is a Define Report Format
(DFNRPTFMT) function, which defines report design headers. These default functions
are:

*Standard Report Heading
m *Standard Screen Heading
m *Std CUA Action Bar

m *Std CUA Window

m *Std Screen Heading (CUA)

You can modify these shipped versions as well as add your own DFNSCRFMT and
DFNRPTFMT functions for use in specific function panel designs.

Note: The default date field on the standard header/footer uses the date format as
defined in the job description of the person executing the application. The date on the
header does not use the CA 2E model values YDATFMT and YDATGEN to determine the
run-time format. The date format for this field can be controlled by the individual job
description or the i OS QDATFMT system value.

Function Keys

CA 2E identifies a number of standard function key definitions, for example Exit, Rollup,
and Delete. The standard functions refer to these definitions rather than to any
particular function key. A function key is then assigned to each meaning. This makes it
possible to change the user interface of an application simply by reassigning the
function keys and regenerating the functions.

When you create a new model with the command Create Model Library (YCRTMDLLIB),
the initial values for assigning the function keys are controlled by the DSNSTD

parameter.

You can also specify alternative values for standard function key meanings. For example,
you could specify F7 as the Exit function key.

The following standard function key meanings are used in the default device designs.

Meaning ISeries Default
*Help FO1/HELP
Prompt FO4

Chapter 9: Maodifying Device Designs 307

Function Keys

Meaning ISeries Default
Reset FO5

*Change mode request FO9

*Change mode to Add FO9

*Change mode to Change FO9

*Delete request F11

*Cancel F12

*Exit FO3

*Exit request FO3

*Key panel request/*Cancel F12

*|GC support F18

Change RDB F22

*Previous page request FO7/ROLLDOWN
*Next page request FO8/ROLLUP

Note: For CUA Text, you can use F10 to activate the action bar.

Additional function keys can be specified using the Action Diagram Editor. For functions
with an action bar, the command text defaults from the action bar accelerators.

For more information on action diagrams, see the chapter, "Modifying Action

Diagrams."

IGC Support Function Key

The Ideographic Character (IGC) support condition assigns a function key to invoke i OS
ideographic support using the DDS IGCCNV keyword. Note that this information is
optional if your keyboard has an IGC mode key.

Note: Code is only generated for the IGC support function key if the model value

(YIGCCNV) is set to 1.

The following table shows the default function keys by function type.

Function *EXIT *PREV

*CHG *DLT HOME, ROLLUP,
(FO9) (F11) ENTER, ROLLDOWN

(FO9) (F11) HELP

Type (Fo1) (FO2)
ISeries (F03) (F].Z)
PMTRCD Y -

- Y -

308 Building Applications

Function Keys

Function *EXIT *PREV *ADD *CHG *DLT HOME, ROLLUP,

Type (Fo1) (F02) (Fo9) (Fo9) (F11) ENTER, ROLLDOWN
ISeries (FO3) (F12) (Fo9) (Fog) (F11) HELP
DSPRCD Y - - - - Y -
DSPRCD2 Y Y - - - Y Y
DSPRCD3 Y Y - - - Y Y
EDTRCD Y - Y Y Y Y -
EDTRCD2 Y Y Y Y Y Y Y
EDTRCD3 Y Y Y Y Y Y Y
SELRCD Y - - - - Y Y
DSPFIL Y - - - - Y Y
EDTFIL Y - Y Y - Y Y
DSPTRN Y - - - - Y Y
EDTTRN Y - Y Y Y Y Y

Function Key Explanations

Each panel design includes one or two lines of explanatory text for the function keys on
the footer format. The text is built from the function key conditions referenced in the
action diagram of the function (that is, references to conditions attached to the *CMD
key field). Text for the HELP, HOME, and ROLLUP keys is omitted.

The number of lines of text (one or two), and the positioning of the function key
explanations can be changed by altering the device design of the Standard header
function associated with the device function.

The format of the text depends on the value of the model value YSAAFMT. It can follow
the CUA (F3=Exit) conventions.

The text of the explanations can be changed for the function using the Device Design
Editor. A default set of explanations is provided for the default function keys for each
function type.

Chapter 9: Modifying Device Designs 309

Function Keys

Specifying Function Keys

Function keys are defined in CA 2E as field conditions attached to the *CMD key field. All
the allowed values are predefined in the shipped system. Refer to the section on the CA
2E environment to see how command key values are assigned.

For more information:

m On CTL context, and an example of the use of function keys, see Understanding
Contexts in the chapter "Modifying Action Diagrams."

m On assigning function key values, see Changing the Number of Function Key Text
Lines later in this chapter.

Subfile Selector Values
The same meaning is given to each subfile selector value across all function types. The

options that are actually enabled depend on the function type. The following standard
meanings are used in the default device designs:

*SFLSEL Condition Meaning CUA Entry CUA Text Shipped
Shipped Values
Values
*Delete#fl Delete 4 -
*Delete#2 4 -
*Zoom#1l Show details for 5 -
this item
*Zoom#2 5 -
*Select#1 Select this item 1 -
*Select#?2 1 -
*Selection char value Select item(s) for - /
action
*Selection char value 2 ! - /

310 Building Applications

Function Keys

Note: For CUA Text, delete and zoom are on the action bar.
Additional subfile selector values can be specified using the Action Diagram Editor.

Subfile selector values are specified as field conditions attached to the *SFLSEL (subfile
selector) field. For functions with an Action Bar, the subfile selection text defaults from
the Action Bar accelerators. The standard values are present in the shipped system.

Note: The length of the *SFLSEL field can be either one or two characters; it is shipped
with a length of one. Any developer can override the model-wide length for a particular
function on the Edit Screen Entry Details panel. A designer (*DSNR) can change the
model-wide length of the *SFLSEL field using the Edit Field Details panel.

For more information:

m On the RCD context and the use of subfile selections, see Understanding Contexts in
the chapter "Modifying Action Diagrams."

m On how to change the values assigned to subfile selector values, see Subfile
Selector Value Explanatory Text later in this chapter.

The following table shows the default selection options by function type.

Function Type *SELECT *DELETE
SELRCD Y -
DSPFIL - -
EDTFIL - Y
DSPTRN - -
EDTTRN - Y

Panel Design Explanatory Text

Panel designs can include two sorts of explanatory text:
m Explanations of the standard function key meanings
m Explanations of the standard subfile selector value meanings, such as 4-Delete on

CUA Entry; Delete is an Action Bar choice on CUA Text

An initial version of this text is built automatically for each device design from the action
diagram of the device function. You can then modify it.

The way the explanation text strings are built and the positions in which they are placed
on panel designs depend on the interface design standards that you use. A number of
variations are possible, controlled by the factors described below.

Chapter 9: Maodifying Device Designs 311

Function Keys

Positioning of the Explanatory Text

CA 2E lets you position explanatory text for function keys and subfile selector values.

Function Key Explanatory Text

Function key explanatory text is always placed in the position specified for the *CMDTXT
fields on the standard header function (DFNSCRFMT) associated with the function
whose device design you are editing. You can change the current standard header
function using the function options display. One or two lines of text can be specified. If
two lines of text are allowed but only one is needed, the text is placed in the lower of
the two lines.

You can control whether the explanatory text appears by changing the usage of the
*CMDTXT1 and *CMDTXT2 fields on the associated standard header function’s device
design.

312 Building Applications

Function Keys

Subfile Selector Value Explanatory Text

Subfile selector value explanatory text is only built if there are subfile selector values for
the function.

You have a choice of two different positions in which to place any subfile selection
explanatory text: you can either place it as part of the function key explanation text
(normally at the bottom of the display), or you can place it as a separate line on the
subfile control record (CUA standard).

The position at which subfile selector value explanatory text is placed depends on
whether you specify that the *SELTXT fields on the subfile control field are to be
displayed.

m |f the *SELTXT field or fields (up to two lines are permitted) are visible, the
explanation text appears at the position indicated by them on the subfile control
format.

m |f the *SELTXT fields are hidden, the selection value explanation text appears at the
position indicated by the *CMDTXT field or fields as specified by the associated
standard header function. If there is only one line of *CMDTXT, the subfile
explanation text appears on the same line. If there are two lines of *CMDTXT, then
subfile explanation text appears on the first line and the function key explanations
on the second.

Whether the *SELTXT fields are available on panel designs is controlled by:

m Enable selection prompt text function option on the associated standard header
function

m Usage (hidden H or output O) of the *SELTXT fields on the device display

This is shown by the following table.

DFNSCRFMT Device Design Resulting Position of
Text

CMDTXT CMDTXT Enable SELTXT1 SELTXT2

lusage 2usage pmttxt Usage Usage

- - N - - No text explanations

0] - - - Selection and
command text in
*CMDTXT1 field

0] 0] 1 - - Selection in
*CMDTXT1,
Command text in
*CMDTXT2

Chapter 9: Maodifying Device Designs 313

Function Keys

DFNSCRFMT Device Design Resulting Position of
Text
CMDTXT CMDTXT Enable SELTXT1 SELTXT2
lusage 2usage pmttxt Usage Usage
(0] - 1 0] - Command text in
*CMDTXT1
Selection in *SELTXT1
(0] - 2 0] H Command text in
*CMDTXT1
Selection in *SELTXT1
(e} 0 2 0] (e} Command text in

*CMDTXT1&2

Selection in
*SELTXT1&2

The selection text fields (*SELTXT1& *SELTXT2) can be preceded by a third field, the
selection prompt field (*PMT) contains an explanation of how to use the explanation

fields.

For example: Type: option, press Enter.

Form of the Explanatory Text

To build the text, CA 2E examines the action diagram to determine how the function
keys and subfile selection values are used. It then uses the condition name associated
with each function key condition or selection value condition found to create a text
string according to the design standard specified by the model value YSAAFMT.

314 Building Applications

Function Keys

CUA Entry Format

CUA Text Format

If the YSAAFMT model value has the value *CUAENTRY, text has the form:

nn=Action nn=Action
Fn=Function Fn=Function

For example:

D=Delete
F3=Exit F9=Change mode

If the YSAAFMT model value has the value ¥*CUATEXT, text has the form:

/ = Select(1)
Fn = Function Fn = Function

For example:

/ = Select
F3 = Exit F9 = Change mode

Specifying Panel Design Explanatory Text

For functions that can operate in more than one mode, there can be two versions of the
explanatory text, one for each mode in which the function can operate. You can change
or add to the explanatory text for the different modes using the Edit Screen Design
Command Text panel that is available from the Edit Screen Design panel.

Chapter 9: Modifying Device Designs 315

Changing the Number of Function Key Text Lines

Chanding the Number of Function Key Text Lines

You can specify alternative values for standard function key meanings. For functions
with an action bar, the function key text defaults from the action bar accelerators.

Each panel design includes one or two lines of explanatory text for the function keys on
the footer format. The text is built from the function key conditions referenced in the
action diagram of the function, for example, references to conditions attached to the
*CMD key field. Text for the HELP, HOME, ROLLUP, ROLLDOWN, and ENTER keys is not
displayed on the panel design.

The number of lines of text (one or two) and the positioning of the function key
explanations can be changed by altering the device design of the standard header
function associated with the device design.

Function key explanatory text is always placed in the position specified for the *CMDTXT
fields on the standard header function Design Screen Format (DFNSCRFMT) associated
with the function whose device design you are editing. You can specify one or two lines
of text. If you specify two lines and only one line is needed, the text is placed in the first
line.

To change the number of function key text lines:

1. Go to the Function Options panel for the header/footer default.

2. Change the enable selection prompt text field (number of selection prompt text
lines).

3. Change the usage of the *CMDTXT1 or *CMDTXT2 accordingly.

Note: You are changing the standard header/footer default. All footers associated with
this default are affected.

Table of Panel Design Attributes

Screen Design Attribute Initially Set By Changed by Override on Override on
Standard Header/ Function
Footer
Default header/footerand DSNSTD Default option on header/ N Y
Action Bars and Windows parameter of footer or YCHGMDLVAL for
YCRTMDLLIB YSAAFMT
Position of selection text Dependent on Altering Standard Y N
default Standard header/footer
header/footer
Style of function key and DSNSTD YCHGMDLVAL for N Y
selection text explanations parameter of YSAAFMT
YCRTMDLLIB

316 Building Applications

Editing Device Designs

Screen Design Attribute Initially Set By Changed by Override on Override on
Standard Header/ Function
Footer
Default function keys DSNSTD Change LST conditions for N N
parameter of *CMDKEY in model or
YCRTMDLLIB YCHGMDLVAL for
YSAAFMT
Fixed display attributes DSNSTD YEDTDFTATR N Y
parameter of
YCRTMDLLIB
Dot leaders DSNSTD YCHGMDLVAL for N N
parameter of YLHSFLL,YCUAEXT
YCRTMDLLIB
Right-hand side text YCUAEXT setto YCHGMDLVAL for N N
*CUA89 YCUAEXT
Virtual Field Indenting YCUAEXT setto YCHGMDLVAL for N N
*CUA89 YCUAEXT
Prompt YCUAPMT setto YCHGMDLVAL for N N
*MDL YCUAPMT

Editing Device Designs

The default device designs that are created when the functions are defined can be
modified to suit specific needs. This topic provides you with information on how to
make changes to the default device designs.

For more information on prototyping your CA 2E device design using Toolkit, see the
Implementation Guide and the Toolkit Concepts Guide.

Chapter 9: Modifying Device Designs 317

Editing Device Designs

Editing the Device Design Layout

CA 2E lets you edit the layout of your device design to display the information that you
need to see. Only 80 characters of the panel design can display at a time. This means
there are times when all fields in a record cannot be displayed. There are function keys
that allow you to shift the panel horizontally, moving left to right, to realign or to display
the selected fields of your record that exceed the 80-character design layout.

Depending on where you are in CA 2E, you have more than one option for getting to
your device design. Use one of the following sets of instructions.

Note: These instructions are only provided here, in the beginning of this chapter. Other
instructions in this chapter assume that you are at the device design level.

From the Edit Database Relations Panel
1. View the list of functions. Type F next to the selected relation and press Enter.
The Edit Function panel appears.
2. Type S next to the selected function and press Enter.

The device design for the selected function appears.

From the Open Functions Panel
Type S next to the selected function and press Enter.

The device design for the selected function appears.

From the Edit Function Details Panel
Press F9.

The device design for the selected function appears.

From the Edit Model Object List Panel

Type 17 next to the selected function and press Enter.

The device design for the selected function appears.

318 Building Applications

Editing Device Designs

Changing Fields

You can change the usage of a field on a device and conditionally set the display
attributes.

To Change the panel’s format relations

1. Select the field. At the device design, place the cursor on the selected field and
press F7.
Note: The selected field must be a field in the first subfile record excluding the
subfile select field.
The Edit Screen Format Relations panel appears.
EDIT SCREEN FORMAT RELATIONS SYHDL
File name : Cuslomer Attribute . : REF
Nccess path name. : Retrieval index Type. : RTV
Format text : Customer
Based on. : Customer Format No . : 1
7 Verb Filesfor Access path-Function Check
Known by Customer code REQUIRED
0 Has Customer name REQUIRED
_ Has Customer address REQUIRED
_ Has Customer city REQUIRED
_ Has Customer country REQUIRED
_ Has Customer postal code REQUIRED
+
R-Required, D-Optional, H-No error, U-User, S-Select F4, T-Default F4
F3=Exit

Chapter 9: Maodifying Device Designs 319

Editing Device Designs

Note: Use the Edit Report Format Relations panel for report designs.

2. Change the format relations. Select one of the following options to change the
format relations and press Enter. An explanation of each option is provided.

m O =optional

m R =required

m N=noerror

m U =user checking

m S =select alternate prompt function

m T =cancel alternate prompt function selection

For more information on the format relations options, see the Editing Device Design
Formats later in this chapter.

CA 2E optional F4 prompt function assignment enables you to override the function
assigned to the access path relationship at the access path and function levels. Using F4
prompt function assignment you can assign any external function other than Print File to
the relation. The relation must be a file-to-file relationship.

To Assign the Override at the Function Level:

1. At the Edit Screen Format Relations panel, type S next to the selected relation and
press Enter.

The Edit Function panel appears.
2. Type X next to the selected function and press Enter.
To Cancel the Override Selection type T next to the selected relation to turn off the

selection override. CA 2E now overrides the default function assigned to the access path
relationship.

For more information on F4 prompt function assignment, see SELRCD in the chapter
"Defining Functions."
To Change the Field’s Format Details

1. Select the field. At the device design, place the cursor on the selected field and
press F5.

The Edit Screen Format Details panel appears.

320 Building Applications

Editing Device Designs

EDIT SCREEN FORHMAT DETALLS SYHDL
Format : Bubfile vecord. Type: RCD

Blank lines before fmt : _1 or Fixed start line no .

Blank lines after column headings: _ Blank line between records . . .
Subfile page . . :

7 Field Func Typ Usg Owr Length GEM name Etp Rqd LL
_ =SFLSEL ACT STS I I 1 *SFLSEL U c
_ Customer code DTA CDE I I 6 AECD K ¥ B
_ Customer name DTA THT I I 20 AFTX A B
_ Customer address DTA THT I I 25 AGTR A B
_ Customer city DTA THT 1 I 20 AHTX A B
_ Custonmer state DTA THT 1 I 20 AOTX A B
_ Customer Allow Credit DA STS 1 H 1 ABST A C
_ Custonmer postal code DTA CDE I I 5 AFCD A B
_ Customer phone number DTA MBR I I 16.8 ACHNB A B
Customer status DTA STS I I 3 ACST A B +

SEL: Z2-Details, A,B.C.D-Text position, I.0,H,'-'-Field usage.
F3=Exit F=Fmt rel F10=Sequence F19=Add function field F24=Hore keys

Chapter 9: Maodifying Device Designs 321

Editing Device Designs

Or,
Place the cursor on the selected field and press Enter.

The Edit Report Entry Details panel or the Edit Screen Entry Details panel appears,
depending on the function type.

F10 toggles between the detail format and tabbing sequence panels.

This panel allows you to see the sequence in which fields are displayed and if you
are using ENPTUI, to adjust the sequence as you prefer. For further information, see
the section on ENPTUI later in this chapter.

EDIT SCREEN FORAAT DETAILS S¥YHOL
Foreat [i Type: RCD
Blank lLines before fmt i 1 or Fixed start line no —_
Blank limne=s after column headings: __ Hlank line betwe=n records . . -
SubFlle page 1
Field Func Typ Usg Dwr Display seq Tab seg
_ =SFLSEL ACT S5TS I 1 1.60
_ Custoner code DTR CODE I I 2. 00
_ Customer name OTA TeT I I 2.00
_ Customer address DT TAT I I 4. 80
— LCustomer city DTR T8T I I .00
_ Customer state OTA THT I I 6. 00
_ Customer Allew Credit DThR ST I H 7. 00
_ Customer postal code DT CDE I I _8.bA
_ Customer phone numrber OTR HBR I I 9.00
_ Customer status OTA S15 I I 18.80 t
SEL: Z2-Details, A.B,.C,D-Text position, I,0.H,"-"-Field usage.
F3=Exit F¥=Fmt rel FiB=Details F19=fdd function field F24=Hore keys

Note: You can modify 1/0 usage on this panel, which allows you to hide the field.

Change the format details. Select one of the following options to change the format
details and press Enter. An explanation of each option is provided below.

m |=input
m O =output
m H=hide
m —=drop

The panel is refreshed and your selection is reflected in the Ovr (Override) field.

322 Building Applications

Editing Device Designs

Hiding/Dropping Fields

To hide or drop fields from your device design you need to change the device field entry
properties of the device design fields.

Note: Only fields on the control key format or fields on the Prompt Record (PMTRCD)
function type can be dropped. Record/detail fields can only be hidden. If the option is
available for a field, it is generally better to drop a field rather than to hide one. Hidden
fields generate associated processing while dropped fields do not. You can use access
paths with dropped fields to achieve the same result.

Setting the Subfile End Indicator

The Subfile End (YSFLEND) model value controls whether the ‘+’ sign or

More. . .” appears in the lower right location of the subfile to indicate that the subfile
contains more records. This capability is available for all subfile functions. The setting
can be overridden with the associated function option. The possible values are:

m *PLUS—A ‘+’ sign indicates that the subfile contains more records. This is the
shipped default.

m *TEXT—‘More. ..’ indicates that the subfile contains more records. ‘Bottom’
displays to indicate that the last subfile record is displayed. Use of *TEXT prevents
the last character of the last line of the subfile from being overridden by the '+".

Existing functions default to *MDLVAL. To change to *TEXT everywhere, change the
model value and regenerate your subfile functions.

Chapter 9: Modifying Device Designs 323

Editing Device Designs

Editing Device Design Function Keys
While you are in your device design, you can move or rearrange the order of the fields
on your display using the following function keys.
®m F1 moves the field 40 positions to the left.
m F2 animates the panel using Toolkit.
m F3 exits the panel.
m F4 moves the field 40 columns to the right.
m F5 edits device format details of the format where the cursor is positioned.
m F6 cancels the pending operations.
m F7 displays the Edit Device Design Format Relations panel.
m F8 moves the selected field to the cursor position.

m F9 wraps text onto the next line starting from the field on which the cursor is
positioned.

m F10 moves text one column to the right.

m F11 removes the line on which the cursor is positioned.
m F12 aligns text below the cursor position.

m F13 fast exits the panel.

m F15 moves panel window to the left margin.

m F16 moves window to the right margin.

m F17 displays a list of device formats.

m F18 displays the Edit Field Attributes panel.

m F19 adds new function fields to the device design.
m F20 edits the function field on the device design.
m F21 adds a line above the cursor position.

®m F22 moves text one column to the left.

m F23 adds a constant field to the device design.

m F24 aligns all fields under the cursor position.

324 Building Applications

Editing Device Designs

Modifying Field Label Text

You can modify the field details of the device using the following steps:

1. View the field text details. At the device design, place the cursor on the field you

want to modify and press Enter.

The Edit Screen Entry Details panel appears.

EDIT SCEEEM ENMTRY DETAILS SYHOL

! Customer code
: RECD

Field mame
BEM rame

Lakel location . . .
Lires before .

i B (Above, Before, Column, blank)

Display lemgth . . 1

Lakel spacing. @ __

FI=Exit, mo update

Spaces before, . . . 1 _2 Secreen kext. . . . ¢ EAH. L. F)
Column Headimgs. . . @ Customer
code 00000000
Left hand side text. : Customer code
Right hand side Lexl : Code
Displaw RHS text . . ¢ _ RHS spaces ¢ _1 Fill LHS text. . . . ¢ ¥
140 Usege. 1
Check condition |, EHONE
Allow Blank, ! Check numsric. . Field exit eption. . 1 Y

FPefel ations

F24=Haore keys

2. Modify the labels for the selected field.

Changing Display Length of Output-Only Entries

From the Edit Screen Entry Details you can override the display length of any
output-only entry by entering a value in the Override length field. An entry is considered

output-only if its I/O Usage is O.

Note: You can also use this method to override the model-wide length of the input

capable *SFLSEL (subfile selector) entry for a function.

Override length field guidelines:

m The value you enter must be shorter than or equal to the actual length of the entry.
The current display length is shown in the Display length field.

m |f you enter O or leave the Override length field blank, the display length defaults to
the value shown in the Display length field. For *SFLSEL, if the Override length field
is 0 or blank, the display length defaults to the model-wide length.

m [f data for the entry is longer than the display length, the data is truncated.

m If you change the I/O usage for the entry to | (input), you cannot change the entry’s

display length.

Chapter 9: Maodifying Device Designs 325

Editing Device Designs

Displaying Device Design Formats

You can see which formats are present in a device design using the following
instructions:

View the design formats. Press F17.

The Display Screen Formats panel appears.

Editing Device Design Formats
You can see which field entries are present in a device design format using the following
steps:
1. Edit the formats. Place the cursor on the selected field on the format and press F5.
The Edit Screen Format Details panel appears.

Note: If there is more than one format, CA 2E shows you all choices. Select the
format you want to edit.

2. Modify the format details.

326 Building Applications

Editing Device Designs

Viewing and Editing Format Relations

Each of the database fields present on a function’s device format is there because of a
relation. Each relation in the access path to which the function attaches gives rise to a
device design relation. Each of these relations is resolved into one or more field entries
in the device format.

By default, all of the relations on an access path are present on the device design.
Depending on the function type, you can override the defaults to drop particular
relations. Dropping relations has the effect of dropping the panel field entries resulting
from the resolution of the relation.

File-to-file relations, such as Refers to, can also lead to referential integrity checking.
This check is implemented as a Read to the Referred to file in order to ensure that a
valid key was specified. You can improve performance by dropping or using these checks
for functions where this check is not required. This would typically be on those
functions that do not update the associated foreign key. The Edit Screen Format
Relations panel is used to adjust how these relations are processed.

To edit the format entries, use the following steps:

1. View the details. At the device design, place the cursor on the field you want to
modify and press Enter.

The Edit Screen Entry Details panel appears.
2. View the format relations. Press F7 to view the relations.
The Edit Screen Format Relations panel appears.
Note: Use the Edit Report Format Relations panel for report designs, which you

reach through the Edit Report panel.

When CA 2E generates a program to implement the function, it normally includes
source code to check that all of the relations are satisfied. For a particular relation on
the device design you can specify that this enforcement of the device design relations
should not take place. You can specify five different degrees of enforcement:

1. Required Relations
The relation is always enforced. Any field arising from the relation must be entered with

a non-zero or non-blank value. If the relation is a file-to-file relation, a record must exist
for each field on the referenced file.

2. Optional Relations

The relation is only enforced if a value is entered for any of the fields that resolve the
relation.

Chapter 9: Maodifying Device Designs 327

Editing Device Designs

3. Dropped Relations
The relation will be dropped. The field arising from the relation is omitted from the

format altogether. Dropped relations are only allowed for Print File and Prompt Record
functions.

4. User Relations
The relation will not be checked. Fields arising from the relation are still present on the

format. You can add your own validation for the relation at an appropriate point in the
action diagram.

5. No-Error Relations

The relation is checked (under the same conditions as for optional). If no record is
found, no error is flagged. The relation is used only to retrieve information, if present.

The following table identifies the relations and how they can be set using the Edit
Screen Format Relations panel.

Function Type REQUIRED OPTIONAL DROPPED USER NO-ERROR

PMTRCD Any Rel Any Rel Any Rel Any Rel File to File
DSPRCDn Any Rel None Any Rel
EDTRCDn Any Rel Non-key None Any Rel File to File
SELRCD Any Rel None Any Rel
EDTFIL Any Rel Non-Key None Any Rel File to File
SELRCD Any Rel None Any Rel
DSPFIL Any Rel None Any Rel
DSPTRN (2) Any Rel Non-key None Any Rel File to File
EDTTRN Any Rel None Any Rel

328 Building Applications

Editing Device Designs

Adding Function Fields

You can add or edit function fields to the device designs of functions using the following

steps:

1. View the function fields. At the device design, place the cursor to the left of where
you want to add the function field and press F19.

The Edit Function Field panel appears.

|

F3=Exit FS=Parameters

h

EDIT DEVICE FUNCTION FIELD SYMDL
Format. ! Subfile record.
Field name . . . : Order valuell

[

to select)

Name of function field that is to be

added to the device design.

2. Add the function fields. Type the name of the field that will be added or
choose the selected function field from a list by entering: ?.

If you are adding a new function field, use ? to display all fields and F10 to create a new
one. During this selection process, you can define any new function field for use in this

or any other function.

Chapter 9: Modifying Device Designs 329

Editing Device Designs

Modifying Function Fields

You can change the definition of an existing function field while in the device design.
Remember that this changes the definitions of the field for all functions using this
definition.

1.

At the device design, place the cursor on the selected field and press F20.
The Edit Function Field panel appears.

Type a ? next to the field name and press Enter.

The Display Fields panel appears.

Note: If you know the name of your function field you can type it after the ?. This
positions the cursor on that function field when the panel appears.

Zoom into the field and modify the edit field details.

Press F3 to exit the field details and return to the device design.

Deleting Function Fields

You can remove a function field from the device design using the following steps:

1.

At the device design, place the cursor on the selected function field and press F20.
The Edit Function Field panel appears.
Delete the function field. Press F11.

Note: Deleting a function field immediately removes the field from your device
design, even if you exit the device design without saving your changes.

Deleting a derived function field and exiting without saving does not remove the

function field from the action diagram.

330 Building Applications

Editing Device Designs

Adding Constants
You can add constants to the device format using the following instructions:

Add the constant. At the device design, place the cursor on the field after which the
constant is to appear and press F23.

The Edit Screen Constant or Edit Report Constant panel appears.

Format name.
|

EDIT SCREEN CONSTANT # SYMOL
Format. : Subfile record.
Lines before. . . : 1 Soreen text. . . . E (M, L, F)
Spaces before . . : 2__
Length. : __ (Blank = use length of text)
Constant :
18 20 38 40 59 60 70

123456789-123456789- 123456 789- 12345678 -123456789-123456789-123456789-12345678
If you are uncertain telephone product SLfDoTt for helpll
A

F123456789-123456789- 123456789- 1234567 9-123456789-12
BO 98 166 118 124 138

F3=Exit

Constant text.

Deleting Constants
You can remove a constant using the following instructions:

Delete the constant. At the device design, place the cursor on the constant press Enter,
and then press F11. The Edit Screen Constant panel appears.

Note: Deleting a constant immediately removes the constant from your panel design,
even if you exit the panel design without saving your changes.

Modifying Action Bars

Depending on the function, CA 2E provides logical action bar defaults for action bar
choices, action bar mnemonics, pull-downs, and associated descriptive text, and
pull-down accelerator keys.

The standard (*STD CUA) action bar header/footer default choices are described next.

Chapter 9: Maodifying Device Designs 331

Editing Device Designs

CUA Text Standard Action Bars

File

Function

Depending on the function, CA 2E provides logical action bar defaults for action bar
choices, action bar choice mnemonics, pull-downs and associated descriptive text, and
pull-down accelerator keys.

The *STD CUA Action Bar header/footer default choices are described below.

The File choice is for actions that apply to the primary conceptual object to which the
panel applies. The following actions are used for one or more panels:

Action Meaning

New Switch to add mode

Open Switch to change mode
Reset Reset panel

Delete Delete the object instance
Cancel Return to previous panel
Exit Leave without update

The Function choice is for actions that apply to the whole panel or interface object.
When the action bar definition panel is loaded, each *CMDKEY condition that is
referenced in the function’s action diagram and not already in the action bar definition
is loaded as a Function pull-down choice. The following action is used for one or more
panels:

Action Meaning

Actions *CMDKEY conditions loaded from the action diagram

332 Building Applications

Editing Device Designs

Selector

Help

The Selector choice is for actions that apply to a part of the panel or interface object.
When the action bar definition is loaded, each *SFLSEL condition referenced in the
function’s action diagram and not already in the action bar is loaded as a Selection
choice. The following actions are used in one or more panels:

Action Meaning
Delete item Delete the defined item or items
Selectors *SFLSEL conditions loaded from the action diagram

The Help choice is for actions associated with Help. The following actions are used in
one or more panels:

Action Meaning

Help Help for the part of the panel where the cursor is located
Ex help Help for the whole panel

Keys help Help for accelerator keys

Help index Help index

Chapter 9: Modifying Device Designs 333

Editing Device Designs

You can override the action bar defaults, using the Action Bar Editor and the following
instructions.

1. Go to the Action Bar Editor. Move the cursor to the action bar at the top of the
panel and press Enter.

The Action Bar Editor appears.

WORK WITH CHOICES Hy Hodel

File Name . . . : Horse

Function name . : Edit Horse

Opt Sequence Choice Usage HMnemcnic CUA Model
1 1 File F A

_ 4 fUnction u i]

_ 5 Selector S A

_ 99 Help H A

SEL: 2-Details D-Delete A-Actions H-/S5-Usage HN-Narrative
F3=Exit F6=Add A Choice F7=All Actions

2. Select the option you need to make your modifications. The first panel, Work with
Choices, allows you to modify action bar choices. From this panel, you can access
other panels on which you can modify the pull-down choices. These panels are as
follows:

m A—Work with Actions of a Choice
m F7—Work with Actions
m Z—Edit a Choice (panel displays details)

m N—Edit Narrative

Modifying Windows

A window can range in size from 5 columns by 5 rows, not including the borders, to just
less than the full size of the display. When implementing DDS windows, i OS adds two
columns on each side of your window and one additional row. The columns protect the
display attributes of the underlying panel. The additional row is reserved for i OS system
messages. Therefore, the application program window appears slightly larger than when
viewed in the panel design.

Attribute Values

Width 76

334 Building Applications

Editing Device Designs

Attribute Values
Depth 22
Location A for Auto (the program automatically places the window).

The other option for Location is U (the window location is
defined by the programmer). To locate the window, use the
Row, Column, and Corner settings. The corner that you specify
is placed in the displacement specified from the top left of the

screen.
Row 1
Column 1
Corner TL

In the following example, the window’s displacement is specified by naming the row and
column at which a particular corner is to be positioned, for example, top left (TL), top
right (TR), bottom left (BL), or bottom right (BR).

Note: You do not see the displacement when editing the device design.

To change the window size and other window features, use the following steps:

1. Go tothe Windows Options. From the device design, place the cursor on the
function title and press Enter.

The Edit Function’s Windows Options panel appears.

EDIT FUNCTION'S WINDOW OPTIONS My Hodel
File Name . . . : Horse
Function name . : Select Horse
Size. . . . -
Depth.0 1?7 5-22
Width.00 62 5-76
Location. A A=%Auto, U=¥User

Row. 1 1-21

Columm 1 1-74

Corner to be positioned. TIL TL, TR, BL, BR
F3=Exit

2. Modify the defaults to meet your requirements.

Chapter 9: Modifying Device Designs 335

Editing Device Designs

Modify the defaults to meet your requirements. Modifying Display Attributes and

Condition Fields

The display attributes of a field are initially set by default to the model standards. These
attributes define how a field is displayed; for example, if it is input, output, or in error.
You can change the model standards and the controlling condition using the Edit Default
Device Field Attributes (YEDTDFTATR) command.

The display attributes for an individual field on a panel can be changed using the
following steps:
1. At the device design, place the cursor on the selected field and press F18.
The Edit Screen Field Attributes panel or Edit Report Field Attributes panel appears.
Field attribute sets

EDIT SCREEN FIELD ATTRIBUTES Hy Hodel
Field . Horse name

Field display attributes:
HI UL RI CS BL ND Colour

- >-Output...... Y _ _ _ _ _ PK
#®-(1)-<-Input....... Y Y _ _ _ _ M
Error....... _ _ Y _ _ _ RO
Entry....... - - - - - -

1. Convert Imput field to Output field if the following
condition is true:

Ctx Field Condition
CTX *Program mode *CHANGEN
A

2. Apply to field text also

F3=Exit F9=Field details

Controlling Condition

336 Building Applications

Editing Device Designs

2. Modify the attributes or conditions.

Note: If you enter Y for Apply to field text and if the condition to display the field as
output is true, the LHS text, RHS text, or column heading associated with the field
assumes the output field attributes you assigned for the field.

Fields can be switched to another set of display attributes depending on the condition.
This includes switching to output only or to non-display. If you need to condition the
field based on a complex or compound condition, you should consider adding a derived
function field that sets a true/false condition field to the panel as a non-display field.

This change should yield a true/false status condition. The associated action diagram
can contain a compound condition. Using this technique, any combination of
parameters and conditions can be encapsulated as a single status condition and used to
condition a panel field.

Usages Display Printer

Y

H

Display Attributes Display Printer

HI

uL

RI

cs

BL

<|=<|=<|=<|=<]|=<
I

ND

Chapter 9: Maodifying Device Designs 337

Editing Device Designs

Editing Panel Design Prompt Text

Function Key Text

Panel designs can include two types of explanatory text:

m Explanations of the standard function key meanings (such as, F4 prompt, under the
CUA Entry standard)

m Explanations of the standard subfile selector value meanings (such as, 4-Delete on
CUA Entry, Delete is an action bar choice on CUA Text)

An initial version of this text is automatically built for each device design from the action
diagram of the device function. You can modify it if needed.

The way the explanation text strings are provided and the order in which they are
placed on panel designs depends on the interface design standards you use.

Function key selection text is always placed in the position specified for the *CMDTXT
fields on the standard header function Define Screen Format (DFNSCRFMT) associated
with the function of the device design you are editing. You can change the current
standard header for the function using the Function Options panel. One or two lines of
text can be specified. If two lines of text are specified, but only one is needed, the text is
placed in the lower of the two lines.

You can control where the text appears by changing the usage of the *CMDTXT1 and
*CMDTXT2 fields on the associated standard header function’s device design.

338 Building Applications

Editing Device Designs

Subfile Selector Text

Subfile selector value explanatory text is built only if there are subfile selector values for
the function.

You have a choice of two different positions in which to place any subfile selection
explanatory text:

m Place the text as a separate line on the subfile control record (CUA standard).

m Place the text as part of the function key explanation text. Typically at the bottom
of the display (System 38 standard).

To manually change the text, use the following step to refresh the text from any action
you take in the action diagram:

Place the cursor on any line of explanatory text and press Enter. The Edit Command Text
panel appears.

The position at which subfile selector value explanatory text is placed depends on
whether you specify that the *SELTXT fields on the subfile control fields display on the
associated standard header/footer.

1. |If the *SELTXT fields (up to two lines are permitted) are visible. The descriptive text
appears at the position indicated on the subfile control format.

2. If the *SELTXT fields are hidden, the selection value explanation text appears at the
position indicated by the *CMDTXT fields as specified by the associated standard
header function. If there is only one line of *CMDTXT, the subfile explanation text
appears on the same line. If there are two lines of *CMDTXT, subfile explanation
text appears on the first line and the function key explanations on the second.

Note: If you hide these fields on any device design then they are hidden and the
associated text is not moved or adjusted.

Whether or not the *SELTXT fields are available on screen designs is controlled by the
Enable Selection Prompt Text function option of the associated standard header
function and the usage (hidden - H or output - O) of the *SELTXT fields on the device
display.

The selection text fields (¥*SELTXT1 and *SELTXT2) can be preceded by a third field, the
selection prompt field (*SELPMT), which tells you how to use the explanation fields.

For example: Type option, press Enter.

Chapter 9: Modifying Device Designs 339

Editing Device Designs

Selector Role

For fields that are selectors on the control formats of DSPFIL and SELRCD functions, you
can specify the nature of the selection in terms of a relation operator. This can be one of
the following:

Relational Operator (EG, NE, LT, LE, GE, GT)—Selects records with field values that
satisfy a test specified by the operator and the selector field value.

For example: GT 10, EQ IBM, LT 100

Start Operator (ST)—Selects records with field values that start with the specified
value (character fields only).

For example: A selector field value of TXT would select TXTDTA and TXTSRC but not
QTXTSRC.

Contains Operator (CT)—Selects records with field values that contain the specified
value for the field (character fields only).

For example: A selector field value of TXT would select QTXTSRC, FREDTXT, and
TXTDTA.

If a value is entered for the selector field, selection is only applied at execution time. If a
value is entered in more than one selector field, the selection criteria are logically
ANDed together.

For example, on the following DSPFIL function example, three different types of selector
role are specified.

CT specified for Product ~ GT specified for Product price EQ specified for Product

name field only records field only records with a class field only records
containing i in their Product price greater than with a Product class of 01
Product name are shown 1200 are shown. are shown.

Display Prodict
Product duct name Product Produ
code price C1

i 1200.00 D01

Type options, press Enter.

4=Delete

Opt Product Product name Product Product Class
code price Class Hame
ooo100 Alleron 1z00.00 D01 Aircraft
000200 Landing gear 3000.00 Aircraft
000300 Piston 600.00 Aircraft
000400 0il pan 400.00 Autcmobile

—+4

LTI RRE

F3=FExit F4=Prqmpt

Records satisfying selection criteria are shown in subfile

340 Building Applications

Editing Device Designs

Add SFLFOLD/SFLDROP to a Subfile Function

You can automatically add Subfile Fold (SFLFOLD) and Subfile Drop (SFLDROP)
functionality to your generated subfile functions. SFLFOLD/SFLDROP lets you define a
command key for the function so that it can be used to toggle between folded mode
and dropped mode. In folded mode, the subfile displays as it does in the screen
designer, with each subfile record taking up more than one display line. In dropped
mode, the operating system automatically truncates each subfile record so that only the
data fields that appear on the first display line are displayed. This means that twice as
many subfile records are displayed.

SFLFOLD/SFLDROP functionality is only applicable to multiline subfiles. That is, subfiles
where one subfile record extends over more than one line on the screen. It is available
for the following function types:

m DSPFIL - Display file

m DSPTRN - Display transactions
m EDTFIL - Edit file

m EDTTRN - Edit transactions

m SELRCD - Select record

Follow these steps:
1. Edit the device design for a subfile function.

2. Verify that the subfile record extends over more than one display line.

*PROGRAM *PGMMOD DD/MMAYY HH: MM: 55
JEEN ID Edit customer
customer number

Type options, press Enter,
4=Delete

Opt customer salutation first name
number

t name suffix

las
|

suffix

last name

last name suffix

F3=Exit F4=Prompt Fa9=Change

Chapter 9: Modifying Device Designs 341

Editing Device Designs

Press F17 to display the DISPLAY SCREEN FORMATS panel and select option Z
(Details) against the Subfile Control format to display the EDIT SCREEN FORMAT
DETAILS panel.

Enter the desired command key to use for SFLFOLD/SFLDROP, toggling in the
Command Key for SFLFOLD field.

Valid values are 03, 05-11, or 13-24. All other keys are reserved for other use by CA
2E.

Notes:

m Itis yourresponsibility to ensure that the selected command key does not
interfere with a command key that is already in use for this screen. The 05
command key is usually selected for the *CMD key field *Reset list condition.
However if 05 is not used in the *Reset list condition, then the 05 command
key is available to be used for SFLFOLD/SFLDROP toggling.

m If this field is left blank, SFLFOLD/SFLDROP functionality is not enabled for this
function. Because automatic checking is not done to ensure that the selected
command key is not used by the function, it is your responsibility to ensure that
the specified SFLFOLD/SFLDROP key does not clash with a command key used
by the function.

In the following example, 06 has been chosen as the SFLFOLD/SFLDROP command

ABCD SHEWRODO1A1 8/29/05 15:53:10
5 ABCD ZM
.+ Bubfile control. ype: CTL
B8
or

GEN name

customer number POS ' .0 AINB

Field

*SFLSEL PROMPT TEXT STX *SELPMT
*SFLSEL TEXT 1 STX *SELTX1

342 Building Applications

Editing Device Designs

Return to the main screen design page, move the cursor to the command key text,
and press Enter to display the EDIT COMMAND TEXT panel.

Press F5 to refresh the display. The text for the specified command key is added
automatically.

Edit or remove the text: the Fold/Truncate text is retrieved from message identifier
Y2F5361 in message file Y2ALCMSG, which can be edited to globally change the
default text. Whether this text is displayed or not, the SFLFOLD/SFLDROP
functionality is still enabled for the function.

SHEWROO1A1 8/29/05 15:46:58

00182M
0000001

| prompt text
upe options, press Enter.

ection text
0000002
=Delete 0000002
iand kKey text A NARON T
FB=Fold/Truncate F9=Change 0000003

0000004

0000005

nd key text 0000006
F3=Exit F4=Prompt

When the function is generated, code is automatically included in the DDS for the
display file and in the source for the program to set and check the subfile mode
before and after the screen is displayed. The subfile mode is available
programmatically through the *Subfile mode field in the PGM context. It has an
internal DDS name SFM, and has the following conditions:

*Folded VAL 0 0
*Truncated VAL 1 1

Within the action diagram, setting the PGM.*Subfile mode field prior to the screen
being displayed causes the screen to be displayed in the desired format (folded or
dropped). By default, a screen displays in folded mode. Pressing the specified
SFLFOLD/SFLDROP command key when the screen is displayed does not return
control to the program but simply causes OS/400 to redisplay the screen in the
alternate format (folded or dropped). Upon return from the display, because you
have pressed another command key or the Enter key, the value of the PGM.*Subfile
mode field can be rechecked to see if the mode has been changed since the screen
was displayed.

Chapter 9: Maodifying Device Designs 343

Editing Device Designs

Example SFLFOLD/SFLDROP

In the previous procedure, when the screen is initially displayed, it displays as follows,

where only four records are displayed, each showing the full subfile record:

RHAUEFR CHANGE
- number

ons,

press Enter.

customer salutation

number

Opt

last name
Mouse

Fd=Prompt

Pressing F6 redisplays the screen, showing only the first line of each subfile record, with

FE=Fold/Truncate

Edit customer

first name

suffix

suffix

suffix

F9=Add

up to 12 records partially displayed. The following panel demonstrates this screen:

RHAUEFR CHANGE

number

Type options,
d=Delete

press Enter.

customer salutation

number

Opt

Mr
Mr

1
2
3
4
5
B

F3=Exit Fd4=Prompt

F6=Fold/Truncate

Edit customer

first name

Fo=Add

344 Building Applications

ENPTUI for NPT Implementations

ENPTUI for NPT Implementations

The enhanced non-programmable terminal user interface (ENPTUI) within CA 2E,
provides options for:

m Menu bars
m Drop-down selection fields

m Cursor progression

m Entry field attributes
m Multi-line entry
m Edit mask

The environment required to implement ENPTUI features includes:
m V2R3 of i OS or V2R2 of i OS with PTFs.

® An InfoWindowll workstation with a workstation controller that supports an
enhanced data stream. Alternatively, V2R3 of Rumba/400 supports the ENPTUI
features. ENPTUI functions are ignored or display with varying degrees of quality on
other terminals.

For more information on display and terminals, see IBM’s Manual Creating a Graphical
Look with DDS SC4101040.

Chapter 9: Modifying Device Designs 345

ENPTUI for NPT Implementations

Creating Menu Bars

You can generate DDS menu bars instead of CA 2E Action Bars with ENPTUI. To indicate
whether to generate the run-time action bars or DDS menu bars for NPT, use the model
value:

YABRNPT

This model value is used for NPT generation only and can be overridden at the function
level with function options. The Panel Design Values panel from the Display Model
Values panel (YDSPMDLVAL) displays this model value.

Valid values are:

*ACTBAR = Create CA 2E Action Bars, default for models created prior to COOL:2E
Release 5.0.

*DDSMNU = Create DDS Menu Bars, the default for models created after COOL:2E

Release 5.0.

You are advised to migrate to DDS Menu Bars if you have upgraded a model from a
release of COOL:2E earlier than 5.0. This is because DDS Menu Bars make use of the new
i OS ENPTUI features that allow the menu bars to be coded in the DDS for the display
file. The CA 2E Action Bars require an external program to be called to process the
action bar. As a result, the DDS Menu Bars are faster, have more functionality, and
create more efficient CA 2E functions.

Note: If you use DDS menu bars, you need to use the User Interface Manager (UIM) to
define help for your actions and choices.

The Edit Function Option panel has the following function option:
If action bar, what type?: (M-MDLVAL, A-Action bar, D-DDS menu bar)
The default value is M, representing MDLVAL.

For DDS Menu Bar:
m Choices and actions are white

m The color of a selected choice or action is the same color as the menu bar separator
line

m The color of the menu bar separator line is the color assigned in YWBDCLR (Window
border color)

m Aseparator line is required for menu bar generation

m [f a choice has no actions attached, it does not display

346 Building Applications

ENPTUI for NPT Implementations

Unlike CA 2E Action Bars, menu bar selections may not have the same sequence
number. CA 2E currently allows NEW and OPEN to each have a sequence number of 1. It
is not required that this be changed. However, if you do not change it, the generators
reassign the sequence number to 2 for NEW.

Assigning Sequence Numbers for Actions

An example of sequence number assignments from the Work With Actions of a Choice
panel follows:

Opt Sequence Action Usage CUA Model

1 Open A
2 New A
3 Reset A
99 Exit A

Gaps in the numbering sequence of actions create a blank line between action choices
in the pull-down menu. For example, the menu resulting from this example displays a
gap between the Reset and Exit choices. This i OS feature allows you to group options,
but you can eliminate an unwanted gap by renumbering the actions sequentially.

Working with Choices

If there are more choices than can display on a single line, they wrap to the next line.
The display menu choices can take up as many lines as needed. The remainder of the
device design is displaced downwards. However, CA 2E Action Bars horizontally scroll
the choices without affecting the remainder of the device design.

m The maximum number of lines that can be devoted to the display of choices is
twelve including one line for the menu bar separator

® The minimum number of lines required for a DDS Menu Bar is three
m CA 2E Action Bars require two lines for display
Note: If you change a function from action bar to menu bar it may fail to generate due

to the displacement of the device by the additional lines required for the menu bar
display.

Chapter 9: Maodifying Device Designs 347

ENPTUI for NPT Implementations

Specifying a Drop-Down Selection Field

When a STS field is assigned as a drop-down list, a Window is created in the display file.
The window contains a single choice field (SNGCHCFLD radio button selection), where
the choices for the control equal the available condition values.

Note: If the number of values attached to a condition changes, you must regenerate the
function.

The condition name associated with each condition value appears in the pop-up
window. After you select a value, the window closes and the external value for the
selected condition is placed in the prompted field.

The drop-down list is positioned on the screen with its top left corner in the first
character of the status field. If there is not enough room on the screen, the drop down

list moves left and up until it fits on the screen.

Note: The drop-down list can only be prompted using F4 (or equivalent assignment);
you cannot prompt with a question mark.

The following is an example of a drop-down list:

File Help
FDALELR OPEN

QK Credit Details

Cuatomer ID: 12345
Street : 9 Abbey Lane
Zip Code: g2an
Terr ID S0
Ciky: ' Buffalo
State ; Hew Tork
Cuatomer name: Janet Twolakes
hocount Balance: 2303.,00

Bllow Credit

Cuat Phonse
Credit Limit o Yes
Cust Info. . o Do
Fi=Exit F4=Frompt Fll=Delete Fli=Kay scresan

348 Building Applications

ENPTUI for NPT Implementations

When you prompt Allow Credit with the F4 key, the previous window displays and
overlays other fields. When a value is selected, the window is removed.

You can designate a STS (status) field as a drop-down list at the condition level, the field

level, and the

screen entry level, as in the partial screen examples that follow:

EDIT LIST CONDITION MYMDL

Field name................... Allow Credit Attr.: STS

Condition name:........... *All values Condition No. : 1100258
Condition type:.............. LST

Prompt........................: Drop Down List

EDIT FIELD DETAILS MYMDL
Control

Default condition.........*None

Prompt........................ Drop Down List

EDIT SCREEN ENTRY DETAILS MYMDL
Prompt Drop Down List

Check condition.....*ALL values

Allow blank..................... 'Y Field exit option;

Chapter 9: Modifying Device Designs 349

ENPTUI for NPT Implementations

m Condition level is the highest level from which you can specify a drop-down list with
inheritance by every field that shares this condition

m Field level assignments override condition level assignments

m Screen level assignments override field level assignments

On the Field level, F10 toggles between the field control information and the
appearance fields.

To specify,

1. From the Edit List Condition panel, the Edit Field Details panel or the Edit Screen
Entry Details panel, place your cursor in the Prompt Type field.

2. Enter *DDL to specify a Drop-Down List.
Note: The Prompt Type field only displays if the field is STS.

The field may be prompted with a ? to get a list of valid values. Valid values for Prompt
Type at the Condition, Field or Screen level are:

*Drop Down List (or *DDL)

*Condition Values Displayer (or *CVD) is the

default value

Defaulting of Prompt Type

If you do not specify a Prompt Type from the device design:
m The default value is the value assigned at the field level

m [fthereis no value assigned at the field level, the default is taken from the
condition level assignment

m |f no condition level assignment is set, the default prompt is the Condition Value
Displayer

The Prompt Type displays as:

® Normal intensity when displaying the default assigned at a previous level

m High intensity if the default is overridden

350 Building Applications

ENPTUI for NPT Implementations

Some Specifics of Drop-Down Lists

Mnemonics

National Language

Some things to keep in mind when specifying a drop down selection list are:

m Status fields with more than 22 condition values do not generate as drop-down
lists, since they are too large for the display.

m There is a maximum of 99 drop-down lists associated with a single program.

m For EDTRCDn and DSPRCDn functions, if the same status field appears on more than
one screen, then all instances should be the same prompt type. That is, either all
condition value displayer or all drop-down list. Each instance of the field should also
be assigned the same check condition whether condition value list or drop-down list
is used.

You can assignh mnemonics using the Edit Field Condition Details panel. They are also
displayed on the Edit Field Conditions panel. When assigning a mnemonic, note that:

m The character chosen as the mnemonic must be a single-byte character present in
the condition name

m The character must not be duplicated within the same status field
m Blank and greater than (>) characters cannot be used as mnemonics

® DBCS mnemonics are not supported by DDS

For national language applications (NL3), the condition value text is translatable at run
time. The size of the Drop-Down List window is large enough to hold the maximum
length condition value name, which is 25 (for nonNL3 applications, the window is only as
wide as is necessary to display the longest condition value name within the given check
condition). Just as with the condition value displayer, the condition values file must be
translated. Mnemonics are not available in national language applications unless
translators embed the mnemonic indicator >’ in the translated text. If this is done, the
translator must be careful not to duplicate mnemonics within a single check condition.

Chapter 9: Maodifying Device Designs 351

ENPTUI for NPT Implementations

Assigning Cursor Progression

Cursor progression assignments give you the ability to assign a tabbing sequence
between fields that are logically grouped together within generated functions. For each
field within a record format, you can assign its position within the tabbing sequence. For
back tabbing, cursor progression assignments are reversed.

Note: The last field displayed within a format should be the highest field in the tab
sequence order. This is a design suggestion, because if not designed in this way, tabbing
within the generated function loops within a single format.

To edit the cursor progression assignments, press F10 from Edit Screen Format Details
panel. This panel is shown earlier in this chapter in the Editing Device Designs section.

You can assign tabbing sequence and change the order in which fields display from the
Edit Screen Format Details panel. "F8 = move", from the device design editor, was the
only way to change the order in which fields displayed. When you use F8 to move a
field, that field is assigned a new display sequence number equal to that of the target
field plus 0.01. Therefore, if you key in new display sequence numbers, you should key
in only integer values.

Cursor Progression and Subfiles

For RCD context, valid values for tabbing sequence number are 0 and 1.

m Value 0 means that no specific tabbing requirements are to be generated and the
cursor should progress to the next field in the same subfile record.

m Value 1 means that when TAB is pressed in the indicated field then the cursor

should advance to the same field in the next subfile record.

All functions are created with default tabbing sequence numbers of 0 to indicate default
tabbing: left to right, top to bottom.

Setting an Entry Field Attribute

The Entry Field Attribute allows attributes to be assigned to a field and used when the
cursor enters that field by tabbing or with a pointing device (mouse). You can only set
these attributes for input capable fields. They are maintained on the Edit Screen Field
Attributes panel shown earlier in this chapter, in the row labeled Entry. The default
setting is blank for no attribute change.

Note: Entry Field Attributes are ignored if the field is converted to output or, at run
time, if the first character in the input field is protected by an edit mask.

You can use the YEDTDFTATR command to set a default for Entry Field Attribute.

352 Building Applications

ENPTUI for NPT Implementations

Assigning Multi-Line Entry

Any alphanumeric field with a length greater than one may be designated as a multi-line
entry field (MLE). MLEs are long text fields that are wrapped into a text box.
Assignments made at the field level are inherited by all screen entries based on this
field. Multi-line entry fields cannot be specified for STS type fields or for any field in the
RCD context, that is, it cannot be used on a subfile.

Examples of how to specify that a text field display as an MLE follow.

1. From the Edit Field Details - Field Control panel, press F10 to access the appearance
panel. This panel shows the line:

Display as Multi Line Entry: Height: Width:

The multi-line entry field displays in normal intensity if it uses the default value
from the field definition and displays in high intensity if the default has been
overridden.

2. Specify either height or width. When you specify one, the other is calculated for
you. Height is the number of rows; width is the number of columns.

Op: RMG RMGS1 8-29-97 17:03:48
EDIT FIELD DETAILS SYMDL
Field name : Product name Document'n seqg. . =
Type - - - + TXT Field usage: ATR
Internal length. . : 20 Data type : A GEN pame: ANIX
E'bd shift: _ Lowercase : ¥

Headings. :- 0ld DDS name:

Text : Product name

Left hand side text. : Product name

Right hand side tezt : Text

Column headings. . . : Product name
Appearance. -

Display as Multi Line Entry . - _ Height . . : Width. . . =
F3=Exit., no update F8=Change name-type F10=Control F24=More keys

If a field is an MLE, then on the device design editor the field displays with a length
equal to the column width assigned to the MLE.

All parts of the MLE display on the device design editor; however, it is the responsibility
of the designer to ensure that no fields are overwritten by the additional lines of the
MLE. Positioning of other fields is relative to the first line of the multi-line entry field.

For workstations that are not attached to a controller that supports an enhanced data
stream, the different parts of the continuation field are treated as separate fields for
editing, but when enter is pressed, a single field is returned to the program.

Chapter 9: Maodifying Device Designs 353

ENPTUI for NPT Implementations

Using an Edit Mask

Edit Mask allows input capable fields to contain format characters that are ignored. For
example, in the formatted phone number field, "(__ _)__ _- ", when the user
enters data, the cursor skips the protected format characters. If Mask input is set to Y
then each non-blank character in the selected edit code is masked. The value 0 is not
masked. If the field containing the edit mask is initially displayed with no data, then the
masked characters do not display but the cursor still skips over the protected positions.

When the field is redisplayed with data, the masked characters appear.

If the first character in an EDTWRD is a format character, as in the phone number
example, that character does not display for NPT DDS. This is a limitation of DDS that
can be corrected by allowing for an integer to the left of the left-most format character,
for example, ‘0() - *; in this case you also need to increase the field length by one.
Alternatively, you can create your own EDTCDE definition using the i OS Create Edit
Description (CRTEDTD) command.

Note: Do not mask fields that represent a quantity or value. If an attempt is made to
mask a numeric quantity, unpredictable results occur. For example, masked characters
are not returned to the application, so the decimal place is lost if it is masked. The edit
mask feature is intended for numeric fields that are always formatted in the same
manner, such as phone number, social security number, part number, date, and time.

The edit mask option is maintainable at the field and screen levels.
Note: The edit mask option is ignored when the workstation is not attached to a
controller that supports an enhanced data stream.
1. Set the field level value for the mask input option on the Edit Field Details panel.
2. EnterYinthe field:

Edit Codes...... Mask input edit code (Y,”)

The default value is blank, for do not mask. F10 toggles between the field control
information and the appearance fields.

354 Building Applications

ENPTUI for NPT Implementations

Op: RMG RMG51 8-29-97 17:09:58

EDIT FIELD DETAILS SYMDL
Field name : Customer phone number Document'n seq. . :
Type - : MBR Field usage: ATR
Internal length. . : 10 _ Data type : P GEN name: ACNB

K'bd shift: _

Headings. :-— 01ld DDS name:

Text : Costomer phone number

Left hand side text. : Customer phone number

Right hand side text : Humber

Column headings. . - : Customer

phone number

Control =-
Default conditiom : ENONE

Check conditiom . : =NONE
Modulus 10411. . . . = _
Edit cedes. z—= _ Hask input edit code (¥.' ')
Screen input : P! '
Screen output. . . . : P

Report 3" o'
F3=Ezit., no update F8=Change name.-type Fl10=Appearance F24=More keys

' o'

3. The Edit Screen Field Attributes panel is used to override the field level assignment.

4. Toreset to the field level default, enter a blank for Mask Input and press Enter.

The data displays in:
m Normal intensity if it is displaying the default assigned at the field level

m High intensity if the default is being overridden

Edit Mask - ZIP + 4 Example
To edit Zip+4 zip codes with a hyphen in front of the additional four digits:
Specify an EDTWRD in YEDTCDERFP with the format:
! 0- _'. This displays as: ' -0000".

If you indicate that this field should be masked, all blank characters, except 0, are
masked. The cursor jumps over the - as data is keyed into the field. Without the 0 in the
EDTWRD definition, the zip 12345- would display as 1-2345.

Chapter 9: Maodifying Device Designs 355

Editing Report Designs

Editing Report Designs

CA 2E provides a default device design for printed reports. However, you can modify the
device designs to suit your specific needs. The following topics provide you with
information on how to modify the report structure and formats.

CA 2E provides you with two distinct steps in defining a report. They are:

m Specification of the individual report design. A default report design is provided
automatically for each print function, such as each PRTOBJ or PRTFIL function that
you define. You can then modify the design.

m Inclusion of the individual report designs within an overall device structure. You
specify how this is to be done by explicitly connecting the functions together and
specifying the parameters to pass between the functions.

You can modify the device design at the format and field level:

m Modify the device design at the format level to

- Suppress (by either dropping or hiding) formats

Modify the spacing between formats

Specify whether the format is to be reprinted on overflow

Modify the format indentation
m Modify the device design at the field level to:

- Rearrange the order of fields

Drop fields or field text

Add extra fields and or text

Modify field text

Note: You cannot override the output field length.

Standard Report Headers/Footers

The top and bottom lines of the report designs are defined by the DFNRPTFMT function.
The name of the standard header function associated with each function is shown on
the Edit Function Options panel. Unless you explicitly selected a particular
header/footer, this defaults to the default header/footer function. The shipped standard
report page header is 132 characters wide, but can be changed to an alternate width.

356 Building Applications

Editing Report Designs

Understanding PRTFIL and PRTOBJ

PRTFIL

PRTOBJ

There are two different types of report functions: Print File(PRTFIL) and Print
Object(PRTOBJ).

m The PRTFIL function is an external function type that specifies a complete report in
itself

m PRTOBIJ is an internal function type that specifies a segment of a report for inclusion
within another report function.

Note: Page headings and footers are always defined by the PRTFIL function.

Each PRTFIL function specifies the layout and processing you use when printing records
from an access path. It specifies the indentation of any embedded PRTOBJ functions
within the overall report design. It specifies all global properties of the report such as
page size and page headings.

m A print file function must be based on a Retrieval(RTV), Resequence(RSQ), or
Query(QRY) access path.

m Calls to embedded PRTOBIJ functions are inserted at the appropriate points in the
action diagram of the embedding function.

m Each PRTFIL function has its own default report design that can be edited.
Embedded PRTOBIJ report designs are shown as part of the PRTFIL report design but
are protected and cannot be edited directly. Only the indentation (distance of
embedded design from the left-hand margin of the report) can be changed.

A PRTFIL function and its embedded PRTOBIJ functions are implemented as a single i OS
printer device file (PRTF) plus a single HLL program.

Each PRTOBJ function specifies the layout and processing you use when printing records
from an access path.

m A PRTOBIJ function must be based on a Retrieval (RTV), Resequence (RSQ), or Query
(QRY) access path.

m The access path can contain several key fields, giving rise to several formats in the
report design layout, and several key breaks in the logic of the action diagrams for
the function.

m Each PRTOBIJ function has its own default report design that can be edited.

m Page headings are not specified.

Chapter 9: Modifying Device Designs 357

Editing Report Designs

Modifying Report Design Formats

Report designs are made up of report design formats. When you first create a report by
nominating an access path and a report function type, CA 2E automatically defines the
appropriate formats for the report design. There are eight different report design
formats. A typical report includes some or all of the following formats.

The Report Heading Format—Includes the title, originator, and page information,
defined by a Define Report Format (DFNRPTFMT) function. There is one Report
Heading format per Print File function. This appears at the beginning of the report
and on each page of the report. The information on this format is common to all
report designs that share the same DFNRPTFMT function. This format cannot be
dropped or hidden.

The Top of Page Heading Forma—Includes the information to be repeated on each
page. By default, this format is empty. There is one Top of Page Heading format per
PRTFIL function. The information on this format is specific to the individual report.
This format is not available for PRTOBJ.

The First Page Heading Format—Includes the information to be printed before the
first level heading or detail records for a given print function. By default, this format
is empty. There is one First Page Heading format per report function (PRTOBJ or
PRTFIL) only printed once per report function.

The Level Heading Format—\-Contains fields appropriate to the key level. There is
one key field per report function (PRTOBJ or PRTFIL). By default, this format is
printed before the first detail or subheading within a level break. If the access path
contains only one key field, this format is omitted.

The Detail Format—Contains fields from the based-on access path. There is one
Detail format per report function (PRTOBJ or PRTFIL). By default, this format is
printed for every record read. This format cannot be dropped, only hidden.

The Level Total Format—Contains fields appropriate to the key level. There is one
level total format per level break per report function (PRTOBJ or PRTFIL). By default,
this format is printed after the last detail record or subtotal within a level break. If
the access path contains only one key field, this format is omitted.

The Final Total Forma—Contains totals of previous total levels. By default, this
format contains only the constant Final Totals; user fields must be added for
totaling. By default, this format is printed after the last level total format.

The End of Report Format (report footer) at the end of the report—Is defined by a
Define Report Format (DFNRPTFMT) function type. There is one End of Report
format per PRTFIL. This format is printed after all other formats in the report. This
format is not available for PRTOBJ.

These format types are present on PRTFIL and PRTOBJ functions.

The following example shows the general appearance of a report design, including
report design format types and page headings.

358 Building Applications

Editing Report Designs

Title User Date Time Page

Report REPORT TITLE YOU 05/13/97 11:16:15 Page: 1
heading

Topof [| Top of page field 1. : OO0000000
page Top of page field 2. : 000000000

First [] First page field . . : 000000000

page

Level [| Level heading: OO00O OOOOOOOOOO0O00
heading

Detail [| Column Column Column

heading heading heading
00000 999999.99 000000000000000000000000000000

Level [| Level Total: Field: OO00O Field: 999999.99 Field: 000000
total

Final [| Final Total. . .:999999.99
total

End of [| ** END OF REPORT **
report

You use the Display Report Formats panel to view which formats are present in the
report device design. This is where you determine the available formats, if they are
printed, the positioning and overflow treatments, and zoom into the format details. To
access the Display Report Formats panel, press F17 from the report device design.

Chapter 9: Modifying Device Designs 359

Editing Report Designs

Automatic Choice of Report Formats

A single detail format is automatically defined containing all the fields from the
underlying access paths.

Additional header and total formats are automatically defined for each key level present
in the access path as follows:

m [f the access path is not unique, header and total formats are defined for each key
level present.

m [f the access path is unique, header and total formats are defined for each key level
present except for the lowest.

Report Header, Top of Page, First Page, and End of Report formats are provided

automatically as follows:

m AFirst Page format is defined for both PRTOBJ and PRTFIL functions.

m A Report Header, Top of Page, and End of Report format are defined only for PRTFIL
functions.

Formats are ordered relative to each other as follows:

m Formats appear in hierarchical order of level: overall headings, level break
headings, detail record, level totals, and overall totals.

m Level headings appear in key order, as specified by the access path on which the
report design is based.

m Each format starts on a new line. A default number of spaces are used between
each format.

® Formats are indented.

HDR Report headings
TOP Topof page headings
1PG First page headings

xHD Level n headings

xHD Level 2 Headings
xHD Level 1 headings
RCD Detail format
XTL Level 2 totals
XTL Level 2 totals

nTL Level n totals

2TL Final report
EOR End of report

360 Building Applications

Editing Report Designs

Automatic Choice of Report Fields

Fields within a format are laid out left to right across the page in the order in which they
appear in the access path. All fields from the access path are available on all formats but
can be hidden or dropped by default.

Fields will, by default, be present or dropped at a given format level according to the
following rules:

Key fields are present on their respective heading and total formats and all lower
level formats.

Non-key fields that are virtual fields are present on a format if all the fields resulting
from the resolution of the virtual field’s defining relation are also present on the
format. That is, if the necessary key fields to retrieve the virtual field are also
present. Any such virtual fields are also present on all lower level formats.

Key fields that are virtual fields are present together with their associated real fields
if the print function is based on a Query access path. That is, the real fields resulting
from the resolution of the virtual field’s defining relation. These fields are also
present on all lower formats.

Non-key fields that are neither virtual fields nor fields associated with a virtual key
are present only on the detail record.

Fields will, by default, be hidden or shown at a given format level according to the
following rules:

m Key fields (including virtual keys) are, by default, hidden except on the respective
heading and total formats which they control.

m Non-key fields that are virtual fields are shown on the format containing their
controlling key fields, if any. If a virtual field is present on a higher-level format
then, by default, it is hidden on the detail level format.

m Non-key fields associated with a virtual key are shown on the format containing
their associated virtual keys. They are hidden on the detail format.

m Non-key fields which are neither virtual fields nor fields associated with a virtual key
are, by default, shown on the detail format.

Access Path Entries KHD RCD KTL

K Key field (real)

K Key field(Virtual)

Virtual field

Fld associated with virtual key

o|l|Oo|O|O

Detail field -

o|lxT|xT|[XT|=X

Chapter 9: Maodifying Device Designs 361

Editing Report Designs

Access Path Entries KHD RCD KTL

Key O: Present and shown by default
H: Present but hidden by default
—: Dropped by default

Field text is obtained as follows:

m Ifafield is present on a detail record, the Column Heading text is used as the text
heading for the field

m |[f afield is present on a heading or total format, the Before text is used as the label
for the field.

The following example shows a report device design made up of eight formats:

Header [|Sprocket Co. STOCK
Header L1 [|Company: 0000 000000000000000000

Header L2 [Warehouse: 0000 000000000000000000

Product Product Stock

Code Name Quantity
Detail [0000000 00000000000000000000 9999.99
format 0000000 00000000000000000000 9999.99

Total L2 [| Company total 000 00000000000000 99999.99
Final [| Grand total 99999.99
total

**END OF REPORT **

362 Building Applications

Editing Report Designs

Defining Report Designs

There are two steps involved in defining a report with CA 2E.

m Specification of the individual report design: a default report design is provided
automatically for each print function such as each PRTOBJ or PRTFIL, that you
define. You can then modify the design.

®m [nclusion of the individual report designs within an overall device structure. You
specify how this is done explicitly, by connecting the functions together and
specifying the parameters to pass between the functions.

You can modify default report layout at both the format and field level. Each of these
steps is identified as follows.

You can modify the device design at the format level to:

m Suppress (by either dropping or hiding) formats

m Modify the spacing between formats
m Specify whether the format is to be reprinted on overflow
m Modify the format indentation

You can modify the device design at the field level to:
m Rearrange the order of fields

m Drop fields or field text

m Add extra fields or text

m Modify field text

When adding extra fields you can specify totaling between formats.

Suppressing Formats

Hiding

By default, a report design has all of the appropriate formats present. You can suppress
a report format in one of two ways:

m Hiding
® Dropping

Hiding a report format causes the printing of the format to be suppressed. The format is
still logically present. This means that any fields belonging to the format are available for
processing, and any level break processing takes place.

Chapter 9: Modifying Device Designs 363

Editing Report Designs

Dropping

Dropping a report format causes the format to be omitted completely. Any fields
belonging to the format are no longer available for processing. Level break processing,
such as printing embedded PRTOBIJ functions still takes place. Generally, it is better to
drop a format rather than hide it, if the format is not required on the report.

Note: Function fields and constants cannot be copied between formats.

Format Drop Drop Hide Hide
Format Format Format Format
Allow Default Allow Default

Report Heading HDR N - N -

Top of page heading TOP Y N Y N

First page heading 1PG Y N Y N

Level heading KHD Y N Y N

Detail format RCD N - Y N

Level total KTL Y N Y N

Final total ZTL Y N Y N

End of report EOR N - N -

Modifying Spacing Between Formats

CA 2E lets you specify, as part of your device design, any page overflow handling.

364 Building Applications

Editing Report Designs

Specifying Print on Overflow

You can specify print overflow at the format level on the Display Report Format Details

panel including

m How many lines to skip before the format is printed, or a start line

m Whether the format is to start on a new page

m Whether the format is to be reprinted on overflow

The following table displays the print control defaults.

Format Start Space Start Reprint
Line Before New Page Overflow
Alw Dft Alw Dft Alw Dft Alw Dft
Report heading HDR Y 1 Y - R Y R Y
Top of page TOP - 1 N - N -
heading 1PG % - \% N - N R
First page
Level heading KHD Y - Y 1 Y N Y N
Detail RCD Y - Y N -
Level total KTL - 1 N N -

Note: R = Required

Changing Indentation

Absolute

Report design formats can be indented. Indentation controls the position on the printed
report of the starting point of a format. You can control indentation at two levels:

m Individual format level: Specify an indentation on each format.

m Function level: Specify an indentation for a PRTOBJ function, then all formats
belonging to the function are indented by the specified amount. For example, the

baseline of the function is indented.

There are two types of indentation specifications:

The indentation of a format is relative to the left-hand margin of the whole report and is
unaffected by changes to the indentation of other formats around it. Absolute
indentation applies to formats only.

Chapter 9: Modifying Device Designs 365

Editing Report Designs

Relative

The indentation is relative to the baseline of the report function that you are currently
editing. Function indents are always relative; format indents can be relative or absolute.

Modifying Indentation

To modify indentation for formats, use the Edit Report Format Details panel. To modify
indentation for embedded PRTOBIJ functions, use the Edit Function Indent panel. You
can get to both panels through the Display Report Formats panel by pressing F17 on the
embedded PRTOBIJ function. You can only modify the format indentation for the formats
that belong to the function whose design you are editing. The format indentation of
formats belonging to embedded PRTOBIJ functions can only be altered by editing the
design for the individual PRTOBJ function.

The following is an example of the indentation formats.

+— Baseline A

FMT A1
+—abs = On device design for PRTFIL &,
: : changing the function indent for
—rel —s PRTOBJ B moves all formats from

FMT A2 : B & C as a single unit, except those
- with an absolute indentation

: : . PRTOBJ B—»
4— BaselineB

On PRTOBJ B dsn all
) ; formats from C are indented
* rel - as single units except those
: : : — PRTOBJ B with absolute indentation
: —» FMT B1
-+ abs g TIIIIII I
: — T8l : : PRTOBJ C —»
: : : Baseline C
FMT B2
: : — PRTOBJ C
- FMT C1
* abs . :
. a—rel—p
— FMT C2
Madified by editing desian Modified by editing design W odified by editing design
far PRTFIL A& for PRTOBJ B for PRTOBJ G

366 Building Applications

Editing Report Designs

Defining the Overall Report Structure

Individual report segments are combined into an actual report by means of a device
structure. A device structure specifies which PRTOBJ functions are to be embedded in
the report and at which points:

®m You can link one or more print object functions before or after all report format
types except the header, footer, and top-of-page formats.

m Acall to each embedded PRTOBJ function is added to the action diagram of the
embedded function.

The following table shows the allowed points for embedded PRTOBJ calls.

Format Embed Embed After Indentation

Before Allow

Default

Report HDR - - - -
Heading
Top of page TOP - - - ,
heading 1PG Y Y Y 0
First page
heading
Level heading KHD Y Y Y +3
Detail format RCD Y Y Y +3
Level total KTL Y Y Y -3
Final total ZTL Y Y Y 0
End of report EOR - - - -
format

Modifying the Overall Report Structure

Individual report segments (formats) can be combined into an actual report using a
device structure. This is only required if you have a combination of a PRTFIL with one or
more embedded PRTOBIJs. A device structure specifies which PRTOBJ functions are
called in the print file of another PRTOBJ and at which points.

m Link one or more PRTOBIJ functions before or after all report format types except
the header, footer, and top-of-page formats.

m Acall to each embedded PRTOBJ function is added to the action diagram of the
function. This must be a PRTFIL or another PRTOBJ.

Chapter 9: Maodifying Device Designs 367

Editing Report Designs

Defining Print Objects Within Report Structure

The overall structure of report designs can be edited using the Edit Device Structure
program. This structure is accessible from the Edit Functions and Display All Functions
panels by typing the line command T next to the calling PRTFIL or PRTOBJ. You can use
the structure editor to:

m Link in additional PRTOBJ functions before or after each of the report formats
m Change, delete, move, or copy PRTOBJ calls within a report structure
Note: If parameters are to be passed between print functions, these parameters must

be declared through the action diagram of the embedding function. For example, you
must go to each function call in the appropriate action diagram.

Using Line Selection Options

When editing the overall structure of the report designs on the Edit Device Structure
panel, use the following line selection options.

Value Description

IA Insert After

IB Insert Before

D Delete

z Zoom into the structure of embedded PRTOBIJ
C Copy: B-Before, A-After

M Move: B-Before, A-After

368 Building Applications

Editing Report Designs

Linking Print Functions

Embedding PRTOBIJ functions is subject to the following rules:

You can insert PRTOBJ functions before or after some of the formats in a report
function. More than one PRTOBI function can be inserted at each point.

Indentation of embedded PRTOBJ report segments (function indentation) is relative
with respect to the baseline of the function. However, the indentation of formats
within the PRTOBJ function may be absolute with respect to the left-hand margin of
the complete report. The function indentation is a property of the calling function.
Thus, the same PRTOBJ function can be used in two different PRTFIL functions with
a different function indentation in each.

You can embed PRTOBJ functions within other PRTOBJ functions.

A PRTOBIJ function can be used in more than one other PRTFIL or PRTOBJ function.
A given PRTOBJ function can appear more than once in a given PRTFIL function but
it cannot be called recursively. For example, a PRTOBJ function must not call itself

either directly or indirectly.

Chapter 9: Maodifying Device Designs 369

Editing Report Designs

Zooming into Embedded Print Objects

When editing report design structures, such as linking one or more functions or
inserting subsidiary PRTOBJ functions, Zoom into the structure of the embedded
PRTOBI. At the Edit Device Structure panel, type Z next to the selected function to zoom
into the structure.

Note: When editing the device design of a PRTFIL or PRTOBIJ that contains an embedded
PRTOBJ, the design of the combined functions displays. Moreover, you can only change
the formats and entries of the function itself and not those associated with the
embedded functions.

The following example shows an outline of linking report functions.

370 Building Applications

Editing Report Designs

ACP 1

PRTFIL

Title
000000a
000000a
| 000000a
000000a
0O00000a
End of report

ACP 1

PRTFIL

ACP 2 ACP 3
PRTOBJ PRTOBJ
000000b 000000¢
| cooooob
000000b

ACP 2 ACP 3

v v

PRTOBJ PRTOBJ

Title
0000004
000000a
000000a
O00000b

000000b
000000c

O00000b
0O00000a
000000a
End of report

Chapter 9: Modifying Device Designs 371

Editing Report Designs

Using Function Fields on Report Design

You will want to accumulate the results of calculations upwards through each level
break. You can use function fields to do this.

Function field types include four standard types that provide predefined functions to
carry out calculations between two adjacent levels of a report. The predefined types
are:

m SUM—Accumulates a value from the current level into a total field on the next
level.

m CNT—Accumulates a count of the number of instances of a field on the current
level (that is, records containing the field) into a field on the next level.

m MAX—Places the largest value of a field on the current level into a field on the next
level.

m MIN—Places the smallest value of a field on the current level into a field on the
next level.

You can specify that the input to a calculation (for example, an accumulation) is the
respective field from the previous level. You do this by means of the CUR and NXT
contexts. If the function field definition is based on the field, CA 2E defaults the context
automatically.

For more information on CUR and NXT contexts, see Understanding Contexts in the
chapter "Modifying Action Diagrams."

The following example shows the use of CUR and NXT contexts in Reports.

RCD Detail format ——™» CUR

NXT

* CUR

1TL Level 1 totals

NXT

2TL Level 2 totals
— CUR

NXT
nTL Level n totals — = CUR
NXT

zTL Final totals

372 Building Applications

Editing Report Designs

Report Design Example

To design reports with CA 2E, consider the structure of the data, and choose the
appropriate function combinations that map to the structure. The following two-part

example illustrates this by showing:

A simple PRTFIL report design. (Example 1)

The same PRTFIL report design with embedded PRTOBJ functions

(Example 2)

Each part of the example shows the following:

Relations and underlying structure of the data

Resulting access path entries

Resulting report formats

Fields present on the report formats

Resulting report layout

Example 1: Simple Report Design

Relations

Consider the following relations to model customer information by geographical region:

FIL
FIL

FIL

FIL
FIL

FIL

FIL

FIL

Country
Country

Area

Area
Area

Customer
Customer

Customer
Customer

REF
REF

REF

REF
REF

REF

REF

REF

Known by
Has

Owned by

Known by
Has

Owned by
Known by

Has
Has

FLD
FLD

FIL

FLD

Country code
Country name

CDE

TXT
Country REF
Country name TXT
Area code CDE
Area name TXT
Area REF
Country name TXT
Area name TXT
Customer code CDE
Customer name TXT
No of machines NBR

If you wanted to produce a report of customers by geographical region, you would need
the following information:

Chapter 9: Maodifying Device Designs 373

Editing Report Designs

Access Path Entries
A Retrieval access path built over the Customer file might contain the following entries:

Note: If you use a RSQ or QRY access path, you would specify the keys yourself.

Access Path Entries Type Key
Country code K1
Country name K2
Area code K3
Area name

Customer code

Customer name

> > > < > < >

No of machines

Default Report Formats

A report design built over the access path shown in the preceding topic would contain
the following report design formats:

Format Type PRTFIL Fields

STD report header HDR Y DFNRPTFMT
Top of page TOP Y User

First page format 1PG Y User
Country code 1HD Y Country
Area code 2HD Y Area

Detail line RCD Y Customer
Area code 3TL Y Area
Country code 4TL Y Country
Final totals ZTL Y User

End of report FTR Y DFNRPTFMT

374 Building Applications

Editing Report Designs

Report Design Fields by Format

The device design formats would, by default, contain the following fields:

Access Path Report
Entries Formats
1HD 2HD RCD 3TL 4TL
K1 Country code (e} H H (e}
K2 Country name e} H H O
K3 Area code 0] (0]
Area name - 0] o -

Customer code

Customer
name

No of
machines

O o0OoOxTxITxT T

Key

O: Present and
shown by
default

H: Present but
hidden by
default

- : Dropped by
default

Chapter 9: Modifying Device Designs 375

Editing Report Designs

Consequently, the default report structure would be:

HDR Page headings
1PG First page
1HD Country code header
2HD Area code header
RCD Customer details
3TL Area code totals
4TL Country code totals
ZTL Final totals

FTR End of report

The default report design might then appear as follows:

HDR [
TOP |
1PG |
1HD [
2HD |

RCD [

3TL |
ATL [
ZTL |
FTR [

*USER *DATE *TIME

Print Customers

Country code OOO Country name OO0000000000
Area code Q000 Area name OO000000000
Customer Customer name No of
code machines
Q00000 0000000000000 0O000O 00000
000000 0000000000000 0000 00000
Q00000 0000000000000 O000O 00000
Area code O0O0O Area name OOQ000000000
Country code OOO Country name OO0000000000

Final totals

** END OF REPORT **

376 Building Applications

Editing Report Designs

Function Fields
You can also add to the report device design a total count of the number of machines on
each format. To do this, you use the function fields as follows:

1. Define a function field Total Number of Machines of the type SUM, based on the No
of Machines field.

2. Add this field to the Area, Country, and Final Total formats accepting the default
parameters.
To add the function fields to accumulate the number of customers you can:

1. Define a CNT function field, Count No. of Customers, with Customer Code field as
the input parameter.

2. Add the CNT field to the Area Total Format.

3. Define a SUM function field, Total of customers, based on the Count No. of
Customers field.

4. Add the SUM field to the Country and Final Total formats, accepting the default
parameters.

Chapter 9: Maodifying Device Designs 377

Editing Report Designs

Modified Report Layout

You can modify the default report layout as follows:
m To add explanatory information on the page headings (for example, *TOP SECRET)

m To suppress certain fields, or field text (for example, the Country Code field and the
text on the Area Name field) and the fields displayed by default on the total
formats.

The modified report layout might appear as follows:

Extra field
*USER *DATE *TIME
HDR [Print Customers
TOP | *TOP SECRET
1PG | Requested by : 00000

1THD [| Country name OO0000000000

2HD | Area code OO0C0O 00000000000
RCD [Customer Customer name No of
code machines

000000 0000000000OOO0O0O 00000
000000 0000000000000 0000 00000
000000 0000000000000 0000 00000

3TL | Area No of machines OOQOQOQO
Area No of customers OQO0QO

4TL | Country No of machines OOpPO
Country No of customers OOP

ZTL | Total No of machines oopo
Total No of customers Qop

**END OF REPORT **

FTR

—_—

Function fields

378 Building Applications

Editing Report Designs

Example 2: Extended Report Design

You can extend the example report design shown earlier by embedding additional
PRTOBI functions. For example, you could have additional entities and PRTOBJ functions
based on them as follows:

m County (within Area)

m Distributor (within Country)

Address (by Customer)

Orders (for Customer)
County Report Segment

If Area is divided into County as shown by the following relations:

FIL Country REF Known by FLD Country code CDE
FIL Country REF Refers to FIL Area REF
FIL Country REF Has FLD Country name TXT

Then to provide a sublisting of the counties for each area, you need a RSQ access path
with the following entries:

Access Path Entries Type Key
County code A K3
Country code A K1
Area code A K2
County name A

Note: This access path should be specified so that it has a unique key order.

A Print Counties in Area PRTOBJ function would be based on this access path. Country
Code and Area Code would be made restrictor parameters so that only counties for a
given area would be printed:

PRTOBJ Function ACP Keys on Access Path uUsG
Counties in area RSQ 1. Country code RST
2. Area code RST

3. County code

Chapter 9: Maodifying Device Designs 379

Editing Report Designs

County Default Report Design

This creates a default layout for the report design as follows:

1PG | Country code OO0
1HD | Area code OO0Q
2HD [County County name
code
RCD [000000 0000000000000 0000

000000 0000000000000 0000
000000 0000000000000 0000

3TL [Area code OO00
4TL | Country code OO0
ZTL | Final totals

County Modified Report Design

By dropping the formats, the suppression of headings would appear as follows:

RCD Counties in area

000000 0OOOOOOOOOOOOOOO00
000000 0OOOOO0OOOOOOOOO00
000000 0COOOOOOOOOOOOO00

Distributor Report Segment

If in each country there are distributors as defined by the following relation:

380 Building Applications

Editing Report Designs

Distributor Relations

IL Distributor REF Owned by FIL Country REF

FIL Distributor REF Known by FLD Distributor code CDE

FIL Distributor REF Has FLD Distributor name TXT

FIL Area REF Refers to FIL Distributor REF
For: Default Sharing: *ALL

To provide sublistings of the following, we need a PRTOBJ on Distributor (Distributors in
Country) and a PRTOBJ on Area (Default Area Distributor), both based on the Retrieval
access paths of the respective files.

Examples:
m The distributors for each country

m The default distributor’s details for each area

Distributor Access Path Entries

Access Path Entries Type Key
Country code A K1
Distributor code A K2
Distributor name A

Area Access Path Entries

Access Path Entries Type Key
Country code A K1
Area code A K2
Distributor code A

Area name A

Country code would be made a restrictor parameter on the Distributors in Country
function so that only distributors in the given country would appear. Both Country code
and Area Code would be made restrictors on the Default Area Distributor function so
that only the details for the specified distributor would print.

Chapter 9: Modifying Device Designs 381

Editing Report Designs

Distributor PRTOBJ Functions

PRTOBJ Function ACP Keys on Access USG
Path

Distributors in RTV 1. Country code RST

country 2. Distributor code

(Distributor file)

Dft area distributor RTV 1. Country code RST
(Area file) 2. Area code RST

Distributor Modified Report Design

This function gives a layout, after modification, for the Distributors in Country report
design as follows:

RCD

Distributors
Q000 0000000000000
0O000~000000000000000
Q000 0000000000000

A layout, after modification, for the Default Area Distributor report design as follows:

RCD

Distributors

Area Default Distributor COOQO0O0O000000C00
Area Default Distributor COO0O00000000C00
Area Default Distributor OOOQO0O0000000C00

Note: Only one distributor will be printed as the function is fully restricted. The device
design shows three lines for the detail line format.

Address Report Segment

If each Customer has an Address as defined by the following relations:

FIL
FIL
FIL
FIL

Address REF Owned by FIL Customer REF
Address REF Has FLD Address line 1 TXT
Address REF Has FLD Address line 2 TXT
Address REF Has FLD Post code TXT

Then to provide a sublisting of the address for each customer, you would need a RTV
access path with the following entries:

382 Building Applications

Editing Report Designs

Address RTV Access Path Entries

Access Path Entries Type Key
Country code A K1
Area code A K2
Customer code A K3
Address line 1 A

Address line 2 A

Post code A

The Print Customer Address print function would have Country Code, Area Code, and
Customer Code as restrictor parameters so that only the address for the given customer
prints.

Address PRTOBJ Functions

PRTOBJ Function ACP Keys on Access USG
Path

Customer address RTV 1. Country code RST
2. Area code RST

3. Customer code RST

Address Modified Report Design

This gives a layout, after modification, for the Customer Address report design as

follows:

RCD Customer address ;| OO0O000000000000
000000000 OO0000

Postcode. . . . : OO0O00O0
Customer address : O0O0O00Q0000Q000000
000000000000 000

Postcode. . . . : OO0O0QQO
Customer address : OO0O00000Q000000
00000000000 0000

Postcode. . . . : OO0O00O

Note: Only one address is printed as the function is fully restricted. The device design
shows three lines for the detail line format.

Chapter 9: Modifying Device Designs 383

Editing Report Designs

Order Report Segment

If, for each Customer, there can exist Orders as defined by the following relations:

FIL Order CPT Known by FLD Order number CDE

FIL Order CPT Refers to FIL Customer REF
FIL Order CPT Has FLD Order date DTE
FIL Order CPT Has FLD Order value VAL

To provide a sublisting of the orders for each customer, you would need an RSQ access
path with the following entries:

Order RSQ Access Path Entries

Access Path Entries Type Key
Order number A K1
Country code A K2
Area code A K3
Customer code A K4
Order date A

Order value A

The Customer’s Orders function would be restricted on Country Code, Area Code, and
Customer Code.

Order PRTOBJ Functions

PRTOBJ Function ACP Keys on Access USG
Path

Customer’s orders RSQ 1. Country code RST
2. Area code RST

3. Customer code RST
4. Order date

384 Building Applications

Editing Report Designs

Order Function Fields

You make a further modification to the Print Customer Orders function to accumulate
the total order value and print it. You can also return the total value so that it can be
accumulated by area and country.

To do this:

1. Define a SUM function field, Total Order Value, based on the Order Value field.

2. Add this field to the Final Totals format, accepting the default parameters. All
intermediate formats must be dropped.

3. Specify the Total Order Value as an output parameter for the PRTOBI function, so
that the values can be summed into the Area, Country, and Final totals of the
PRTFIL function.

4. Inthe action diagram of the PRTOBJ function, move the calculated Total Order
Value into the PAR context.

Order Modified Report Design

You would obtain a layout, after modification, for the Customer’s Orders report design

as follows:
RCD | Order Order Order
Date Number Value
00000000 000000 00000000
00000000 000000 00000000
00000000 000000 00000000
ZTL | Customer total 00000000

Chapter 9: Modifying Device Designs 385

Editing Report Designs

Overall Device Structure

Having created all of the separate PRTOBJ functions as described previously, you would
then insert them, using the device structure editor, into the basic default structure of
the PRTFIL function. The following illustration shows the device structure editor with
inserted PRTOBJs and the parameters specified for each PRTOBJ.

Note: In the actual device structure editor, parameters are not shown.

HDR Page headings

1PG First page

1HD Country code header
Add after——m \PRTOBJ Distributors in country
1HD PARM: Country code
Add before—m /PRTOB.J Default area distributor
2HD PARM: Country/Area
2HD Area code header
Add after—p— \PRTOBJ Counties in area
2HD PARM: Country/Area code
RCD Customer details
Add after——= \PRTOBJ Customer address
RCD PARM: Country/Area/Customer code
Add after——m \PRTOBJ Customer's Orders
RCD PARM: Country/Area/Customer code
3TL Area code totals
4TL Country code totals

ZTL Final totals

FTR End of report

Parameters to PRTOBJ Functions

To supply parameters to the PRTOBJ functions called by the PRTFIL Print Customers, you
must edit each function call in the PRTFIL action diagram. In most cases, the default
parameters can be accepted.

386 Building Applications

Editing Report Designs

Function Fields

To accumulate the order value, do the following:

1.

Define a USR field, Detail Line Order Value, based on the Order Value field on the
Customer’s Orders PRTOBJ function.

Attach this field to the Detail line format of the PRTFIL function, and hide it.

In the action diagram for the PRTFIL function, specify that the output parameter
Total Order Value from the PRTOBJ function be moved into this USR field.

Define a SUM function field Accumulated Order Value based on the Order Value
field.

Add this SUM field to the Area, Country, and Final Total formats, supplying
appropriate parameters.

Chapter 9: Maodifying Device Designs 387

Editing Report Designs

Overall Report Design

The separate functions shown previously would be combined to give the following
overall result:

HDR[

TOP [

*USER *DATE *TIME

Customer Statistics

*TOP SECRET

1PG |

THD [

2HD [

RCD[

3TL[

4TL [

ZTL [

FTR|[

Requested by: 00000

Country name OO0O000000000
Distributors
0000 0000000000000

Area Default Distributor 0000000000000
Area code OO0 OO0O00000000000

Counties in area

0000 00000000000 000

Customer Customer name No of
code machines
000000 0000000000000 0000 00000

Customer address: 00000000000

00000000000
Postcode . . . 000000
Order Order Order
Date number value

000000 0000 0000000
Customer total OO000000

Area No of machines 00000
Area No of customers 0000
Area Order value 0000

Country No of machines O0O000O
Country No of customers OO00
Country Order value 0000

Total No of machines 00000
Total No of customers 0000
Total Order value 0000

**END OF REPORT **

388 Building Applications

Device User Source

Device User Source

The device user source feature provides the ability to patch device designs of display
and report functions in order to deploy operating system functionality that is not yet
supported by CA 2E. For straightforward patches such as, inserting one or two data lines
at the beginning of a generated source extent, you type the data lines in the device user
source member that implements the patch. A set of special merger commands is
provided for complex patches such as, applying a change to a specific location in the
generated source based on a condition.

When to Use Device User Source
Device user source contains customized device language statements. Use device user
source when:

®m You require a feature that is not supported by CA 2E; for example, you need the
following functions of the Advanced Printer Function (APF):

- Print logos

- Special symbols

- Large characters

- Barcodes

- Barcharts

- Vertical and horizontal lines that can be used to form boxes

®m You require a facility introduced in the current i OS release that has not yet been
implemented in CA 2E; for example, HTML support.

m The way an existing feature is implemented is not suitable for your use; for
example, change appearance of an indicator to blinking or reverse image.

® You need to insert special anchors to support your pre-processor.

Chapter 9: Modifying Device Designs 389

Device User Source

Understanding Device User Source

The term device user source refers to both:

m An EXCUSRSRC function that contains device language statements that can be
applied to a device function to customize the associated device design

m The user-defined device language statements contained in the EXCUSRSRC function

User source attached to a device function is automatically reapplied each time the
device function is regenerated.

Since DDS is the most commonly used device language, you can also use the more
specific term DDS user source to refer to the EXCUSRSRC function and the user-defined
DDS.

User-defined device code must use the same device language used by the device
function to which it is applied. In addition, it is your responsibility to ensure that it
follows the syntax rules of the device language.

The device EXCUSRSRC function may also contain special instructions called merger
commands that specify how device user source is added to or substituted for
automatically generated source for the device design.

The user-defined device source is stored as a separate member of the source file
associated with the device language; for example, QDDSSRC in the generation library.

Attachment Levels

When you apply device user source to a device design property, it is said to be attached.
The word property in this case refers to a specific instance of a device, screen, report,
format, or entry. You can specify the attachment of device user source to the following
types (levels) of device design properties:

m Device (device-level attachment)

m Screen/Report (screen- or report-level attachment)
m Format (format-level attachment)

m Entry (entry-level attachment)

Multiple device user source functions can be attached to a property. However, a specific
device user function can be attached to a given property only once.

The term extent is used to refer to the set of source statements that describe a device
design property in the generated source member.

390 Building Applications

Device User Source

Special Field-Level Attachment

A field-level attachment provides an efficient way to apply a device entry change to all
or most panels and reports that contain a particular field. In other words, when you
attach device user source to a field, it is automatically attached to all derived device
entries based on that field.

Defining a Device User Source Function

1. From the Edit Function panel, define an EXCUSRSRC function with access path
*NONE.

Zoom into the function. From the Edit Function Details panel, reset the device
language, for example, to DDS.

Device Language Function type
i !
EDIT FUNCTION DETAILS Hy Model L
Function name . . : Horse Hape Device Func Tupe : '"Edit device user source'

Received by file. : Horse Acpth: *NONE

Source library. . : HYGEN
Source Device,

? Member Langugge Text
[| HYASUFR DDS Horse Hame Device Func Execute user source

SEL: E-STRSEU (CreatesUpdate Device user sourcel
F3=Exit F7=0Options FB=Change name F20=Harrative

Chapter 9: Maodifying Device Designs 391

Device User Source

Type E against the file to enter DDS source or merger commands.

Merger commands begin with)
|

Columns Lo 1 71 Edit MYCGEN/QRPCERC
SEU==> MYASUFR
FMT ** ... +... 1 ...+ 2 o400 3 co4+0.00 4 Lo+l 0 B LoH+las B Lo+l T

ek ko k ko ok ko ok ko Begjnning Of data Kk k kbbb bbbk bbbk bk b kb ko ke bhhe
0001.00 find text=SETOF (31
0002.00) insert
0003.00 A SFLDROP (CF13)

0004.00) paint color=blu

0005.00) find text=HLPARA

0006.00) find text=HLPARA

0007.00 } insert

0008.00 * %%% insert after Second occurence of 'HLPARA'

Ik kkokkkkkkkkhhkkd BN OF daba * xddkkhdok kb dokodeok dokkokdok ok ok ok ok ok ok ko ok ko ok

F2=Exit F4=Prompt F5=Refresh Fo=Retrieve Flo=Cursor
Fls=Repeat find Fl7=Repeat change F24=More keys
Member MYASUFR added to file MYGEN/QRPGSRC

The commands beginning with) are special merger commands that are executed
during source generation. Because merger commands do not follow DDS (or other
device language) syntax, an error message displays and you need to set the ‘Return
to editing’ option to N on the Exit Function Definition panel.

Save the source member. Device user source is merged when the function it is
attached to is generated. Following is an example of device user source merged
with generated source for the subfile control format of an Edit File function.

Device user source inserted in
generated source.

Columns . . . : 1 71 Edit OPKREGEN/CDDSSRC
SEU==> OKBWEFRD
FMT DP BANOINOZNO3T.Name++++++RLen++TDPHLinPoSFUNCEioNS++++++++++++++++++

0D99.00 B NE2 ROLLUP (27 'Next page.')

0100.00 B CFO5(05 'Reset.')

0101.00 B CF02(0% 'Change mode.')

0102 .00 B CF04 (04 'Prompt.')

0103 .00 B* SETOFFS.o oo

0104 .00 B SETOF (992 'Glcbal error flag

0105.00 B] SETOF {31 'Invalid: Z2AWCD')

0106 .00 A SFLDROP (CF13)

0107.00 R

0108.00 * Help specifications

01095.00 B H HLPARA (*NONE)

0l1l10.00 B HLPPNLGRP (' INTRO' COKBWEFRH)

0111.00 B H HLPARA (*NONE)

0112 .00 * %%% insert after Second occurence of 'HLPARA'

0113.00 B HLPPNLGRP ('FUNC1' OKBWEFRH)

0114.00 B H HLEARE { *NONE)

0115.00 B HLFPNLGRPE ('SFLSEL' OKBWEFRH
F2=Exit F4=Prompt F5=Reffesh F9=Retrieve Fld=Cursor
Fl6=Repeat find Fl7=Repeat changs F24=More keys

Example of positioning to the second
occurence of search string.

392 Building Applications

Device User Source

Attaching Device User Source to a Device Design
1.

Go to the device design where you want to attach the device function. In this

example, Edit Horse.

Do one of the following depending on the part of the device design where you want

to attach the device user source.

m For device-level, press F3.

m For screen-/report-level, press F17.

m For format-level, position the cursor on the selected format and press F5.

m For entry-level, position the cursor on the selected entry and press Enter.

Press F11 on the panel that appears to access the Attach Device Functions panel. In

this example, we chose format level.

Name ofthe EXCUSRSRC

Level to which the device user

function containing device The file the device source is attached; namely,
USer source EXCUSRSRC device, report, screen, format, or
function is Ibuilt over entry. |

ATTACHED DEVECE FUNCTIODNS My Hodel
File . . : Hprse Device format: Subfile recprd.
Function : EHit Horse A

Device Attached Applied
? Lang. [for¥ Device function Asgociated with file at level seguence
B DDS Format-Level Device Func Horse Format 1.88

'
Bottom

SEL: [-Edit device function source, +-= EnablesDisable,| D-Detach., R=-Rescope
F3=Ex]t F5=Reload F?=Attach function F1?=Services

Language in which the
device user source is written

Name of the device design entity
whose attachments are listed

Chapter 9: Modifying Device Designs 393

Device User Source

Note: A device user source function was previously attached to this format.

Press F9 to display the Attach Device Function window and attach the device user
function just created.

ATTACH DEVICE FUNCTION

: Function file : fi
: Function. . . : 7

i F3=Exit :

Specify the device user function just created and press Enter.

. ATTACH DEVICE FUNCTION

Function file : Horse

: Function. . . : Horse Hame Dewvice Func!
F3=Exit

The Attached Device Functions panel reappears showing both attached device user
functions.

394 Building Applications

Device User Source

Sequence numbers
]

ATTACHED DEVICE FUMCTIONS My Model
File . . : Horse Device format: Subfile record.
Function : Edit Horse

Device Attached Appljied

7 Lang. [forl Dewvice function Associated with file at level sequgnce
0 DDS Format-Level Device Func Hotrse Format 1.08
_ DDS Horse Hame Device Func Hotse Format 2.00
Bottom

SEL: E-Edit device function source, +-- EnablesDisable., D-Detach, R-Rescope

F3=Exit F5=Reload F9=Attach function F17=Services
'Horse Name Device Func' has been attached.

|
Informative message

From this panel you can:

m Use the E option to edit device user source

m Use the D option to detach device user source

m Use the + and — options to temporarily disable the selected device user source

The sequence numbers specify the order in which the device user functions are
attached to the device design. Sequence numbers are automatically assigned and
can be changed. However, they must be unique for a level. The subfile is sorted by
sequence number when the display is reloaded.

Sequence numbers:
m Range from 0.01 to 999.99
m Areincremented by 1.00 when automatically assigned

3. Press F3 to exit. The attached device user source is automatically applied to the
subfile record of the Edit Horse device design whenever it is regenerated.
Entry-Level Device User Source

Device user source can be explicitly attached at the entry level or be implicitly attached
through inheritance from the field level.

Chapter 9: Modifying Device Designs 395

Device User Source

Explicitly Attaching Entry-Level Device User Source

From the Edit Screen Entry Details panel for the entry press F11 to display the Attached
Device Functions panel. Press F9. The Attach Device Function panel displays where you
can proceed as discussed in the section Attaching Device User Source to Device Design.

You can use the D option to detach the entry-level device user function that is explicitly
attached. You can also use the + and — options to enable and disable the entry-level
attachment.

Note: When the sequence number for an explicitly attached entry-level device user
function is assigned, numbers that are an even multiple of ten are skipped to avoid
conflicts with field-level sequence numbers.

Attaching Device User Source to a Field

This example shows how to attach device user source to a field, which is then inherited
by all device entries derived from this field.

1. Go to the Edit Field Details panel for the field to which the device function is to be
attached. In this example, Edit Horse.

Press F11 to display the Field-Level Device Functions panel. Use this panel to attach
device user source to a field.

Field name
|
FIELD-LEVEL DEVICE FUNCTIONS My Model ¢
Field . . . ! Horse name

Device Applied
7 Lang. [forl Device function Associated with file sequence
SEL: E-Edit device function source, D-Detach function
F3=Exit F5=Reload F9=Attach function Fi17=Services

396 Building Applications

Device User Source

Press F9 to display the Attach Device Function window. Specify the device user
function just created for the Horse name field and press Enter.

ATTACH DEVICE FUNCTION

Function file : Horse
Function. . . : Horse Name Device Func!

F3=Exit

The Field-level Device Functions panel redisplays showing the attached device user
function.

FIFLD-LEVEL DEVICE FUNCTIOMS Hy Hodel
Field . . . : Horse name
Device Applied
7 Lang. [forl Device function Associated with file sequence

B DDS Horse Mame Device Func Horse

Botton
SEL: E-Edit device function source, D-Detach function

F3=Exit F5=Reload F9=Attach function F17=Services

The sequence numbers specify the order in which the device user source is applied
to the field. Field-level sequence numbers are:

m Integers from 1to 999
m Incremented by 10 when automatically assigned

Press F3 to exit. The device user source is now implicitly attached to derived entries
for the Horse name field on all device designs.

Note: If a device user function is already attached at the entry level when you
attach the same function at the field level, the field-level attachment for that entry
is effectively ignored.

Chapter 9: Maodifying Device Designs 397

Device User Source

Working with Inherited Entry-Level Attachments

1. Go to a device design where the entry is used. In this example, Edit Horse.

Position the cursor on the entry derived from the field where you attached the
device user source; in this example, Horse name. Press Enter to display the Edit
Screen Entry Details panel.

EDIT SCREEN ENTRY DETAILS Hy Hodel
Field nawe : Horse name Display length . . : 25
GEN mame : ADTX
Label location . . . : [® (Rbove.Before,Column.kblank) Label spacing. : __
Lines before . . . [
Spaces before. 2 Screen text. . . . E (M, L, F)
Column Headings. . Horse name
Left hand side text. :
Right band side text : Text
Display RHS text . . : _ RHS spaces ¢ _1 Fill LHS text. . Y
1,0 Usage. R |
Check condition . : *NONE
Allow blank. : Field exit option.
Fil=Entty user source F1B8=Screen attributes F24=Hore keys
New function key New function key

Press F11 to display the Attached Device Functions panel for the Horse name entry.
The device user source you attached to the Horse name field is shown in the list of
device user functions attached to the Horse name entry.

These indicate that the
attachmentis inherited
from the field level \

FUNCTIONS Hy Hodel

ATTACHED DEVI

File . . 1 Tse Device formaf: Subfile record.
Function Edit Horse Device entty ™\ Horse name
Devide Attached Applied
7 Lgrlg. [forl Device function fAssociated with file at level seguence
0 ¥ DDS Horse Name Device Func Horse Field 10.80
Bottom

SEL: E-Edit device function source, +/- EnablesDisable, D-Detach, R-Rescope

F3=Exit F5=Reload F9=Attach function F17=Services

398 Building Applications

Device User Source

Overriding an Inherited Entry-Level Attachment

You can override an automatically attached device user source at the entry level in two
ways:

m Disable the attached device user source at the entry level using the - option. This
blocks the inheritance from the field level.

m Explicitly attach the device user source at the entry level using the R (rescope)
option.

Note: You cannot use the D option on this panel to detach a device user function that
was inherited from the field-level.

The + and - options are available for all device properties. You can use them to release
or temporarily hold any explicitly attached device function. In addition, for the entry
level you can use them to allow or prevent the inheritance of device user source from
the field level.

If you do not want the inherited device user function applied to this Horse name
entry, type - against it and press Enter.

Indicates that the field-level Level to which the device user
device user source is source is attached; namely, device,
disabled at the entry level. report, screen, format, field, or entry.

ATTACHED DEVIEt FUHCTIONS Hy Hodel
File . . i TSe Device formab; Subfile record.
Function /Edit Horse Device entry N\Horse name

Attached Applied
. [for] Device function Associated with file at level sequence
= DDS Horse Name Dewvice Func Horse Field 10,00

LBl

Bottom
SEL: E-Edit device function source, +/=- Enable-sDisable. D-Detach. R=-Rescope

F3=Exit F5=Reload F@=Attach function Fi?=Services

Chapter 9: Modifying Device Designs 399

Device User Source

The device user function is no longer highlighted and the * is reset to - indicating
that the function is disabled. When you generate the Edit Horse function, the device
user source is not applied to the Horse name entry.

1. To re-enable the field-level device user source, type + against the function and
press Enter. The * is redisplayed to indicate that the device user source is again
inherited from the field level.

2. To make the entry-level user source independent of the field-level user source type
R (Rescope) against it and press Enter. This explicitly attaches the same device user
function to the entry, overriding the inheritance of the device user source attached
at the field level.

You can now detach the device user source at the field level without affecting the
entry-level attachment.

These indicate that the device user source
is explictly attached at the entry level

ATTACHED DEV FUNCTIOHS Hy Hode
File . . : Morse Device forwat: Subfile rTecord.
Function 4/ Edit Horse Device entrd\: Horse name

Attached Applied
at level sequence
Entry 10.08

. [for] Device function Assooiated with file
DDS Horse Hame Device Func Horse

Battom
SEL: E-Edit device function source. +-- Enable-Disable, D-Detach. R-Rescope

F3=Exit F5=Reload F9=Attach function F1?=Services

To reinstate the automatic field-level attachment, detach the entry-level
attachment by typing D against it and pressing Enter.

Substitution Variables

The following substitution variables let you embed source generation information into
Device User Source that is then resolved into the actual values in the final display file
source.

Variable Name Description
#*MBR Display file source member name
H#*FILE Display file source file name

400 Building Applications

Device User Source

Variable Name Description

#*LIB Display file source file library name

H*TYPE Display file source type (DDS)

H*ENT Dependent on the attachment level as
follows:

Device: Display file name
Screen/Report: blank (not supported)
Format: Record format name

Entry: Entry (field) name

Merger Commands for Device User Source

Device user source consists of DDS (or other device language) source statements and
special merger commands specifying how to update the automatically generated source
for the device design.

Each time a property of a device design is generated a special program, Device User
Source Merger (the merger), is invoked to merge any device user source attached to the
property. The merger interprets all encountered commands and updates the original
generated source according to the requested actions.

Merger commands provide basic features available in classic line-editing word
processors. The main concept of such tools is the current line a floating anchor around
which the original text is updated. Two types of merger commands are required to
complete similar tasks within a device user source function: one to position to the line in
the source and another to edit the line.

Several device user source functions can be attached to a device property. When the
first one is applied, the current line is the first line in the generated extent (default). As a
result of the positioning instructions coded in the device user function, the location of
the current line is changed. For subsequent device user source functions, the current
line is not reset back to the beginning of the extent. This lets you separate positioning
commands from editing commands in different device functions. Such granulation of a
requested action makes each device function less specific and increase its reusability
and efficiency.

The available merger commands are:

no operation OVERLAY (Table Text Center)REPLACE
*or# PAINT (Table Text Center)SCAN
FIND POSITION (Table Text Center)SKIP

Chapter 9: Modifying Device Designs 401

Device User Source

INSERT

QuIT

(Table Text Center)UPDATE

MARK

(Table Text Center)

Command Syntax

A merger command has the following structure:

[<command verb>

[<parameter> = <value>]. . .]

where:

In column 1, identifies this as a merger
command line rather than a source code
line.

command verb

Identifies the main action. In general, each
command has a three-letter abbreviation,
which is shown preceded by | in the
following command descriptions, for
example: {INSERT | INS}.

parameter

Clarifies the main action.

value

Is a degree of the clarification and can be
up to 60 characters.

402 Building Applications

Device User Source

The following syntax rules apply:

m One or more blanks are required as delimiters between the major structural parts.
m Each merger command must be coded on one line.

m Command text is not case sensitive unless otherwise noted.

m [f a parameter value contains a blank, enclose it in either ' (single quotes) or "
(double quotes).

m |f a parameter value contains an apostrophe (single quote), either enclose it in "
(double quotes) or enclose it in ' (single quotes) and duplicate the apostrophe.

m Any number of blanks are allowed between the parameter, equal sign, and value.

m Parameter names for all merger commands can be abbreviated using the first
letter; for example, COLUMN-= can be abbreviated as C=.

m Two special comment parameters, * and #, let you insert comments anywhere on a
merger command. They are available on all merger commands and can appear
multiple times on the same command. For example,

) # Conditional change for DSPFIL processing (full-line comment)

) SCAN * = ‘Verify type’ FOR = TYPE:DSPFIL # = To set condition

) SKIP THROUGH = next * = "Check condition" 1IF = failed LAST= scan
<device user source data lines comprising the patch>

) QUIT # = ‘Exit, because the job done’

) MARK TAG = next

Alphabetical List of Merger Commands

or# (Full-line Comment)

(asterisk) or # (pound sign) indicate that the entire line
isa comment.

(asterisk) or # (pound sign) indicate that the entire line is a comment.

) {*|#} [< comment >]

Full-line comment commands are not counted by the SKIP command.

Chapter 9: Modifying Device Designs 403

Device User Source

No Operation

FIND

INSERT

MARK

The No Operation command consists of only a) in column one. It is counted when
skipped using the SKIP command.

Use it for auxiliary purposes such as to indicate the end of a template group for the
OVERLAY command.

FIND searches the generated source for the search string specified by the TEXT operand.
The search starts from the current line and stops on the first occurrence of the found
text or on the last line in the current device source extent. The search string is case
sensitive.

) {FIND | FND} TEXT=<text>

INSERT adds text after the current line. The added text starts immediately after the
command and is interrupted by any line with) in column 1.

) {INSERT | INS}

If the insert is successful, the current line is set to the last line added. If no lines were
inserted, the current line remains unchanged.

MARK defines a label that can be referred to on the SKIP command to delimit a group of
skipped commands. Place the MARK command after the last command to be skipped in
the device user source. The label need not be unique; the choice is up to you.

) { MARK | MRK } TAG = < tag name>

404 Building Applications

Device User Source

OVERLAY

Examples

OVERLAY uses the following user source lines as a template group to overlay the
corresponding columns of the current line in the generated source. Each template line
can potentially change columns 1 to 72. In case of a conflicting override by several
templates, the result of the last one remains in effect.

By definition, characters in the generated source line that correspond to a blank
character in the template line are not changed. To replace a character in the source line
with a blank, assign a character to represent a blank on the template using the BLANK
parameter. This character overlays the corresponding character in the source line with a
blank.

) {OVERLAY | OVR} [BLANK = <character>]

The following lines substitute H for the character in column 10 of the current line in the
generated source. All other characters are left unchanged.

) OVERLAY

The following lines substitute a blank for the character in column 9 and an H for the
character in column 10 of the current line in the generated source. All other characters
are left unchanged.

) OVERLAY BLANK=%
%H

Chapter 9: Modifying Device Designs 405

Device User Source

PAINT

POSITION

QUIT

PAINT modifies the color of all generated lines for the given extent when the basic
DSPF/PRTF source member is viewed. Painting the original device source extent clearly
identifies the related generated source and is recommended before you create and
attach device user source functions. Only lines produced by the CA 2E device generator
are affected by this command.

) {PAINT | PNT} COLOR={CLEAR(CLR) | RED | GREEN(GRN)
| WHITE(WHT) | TURQUOISE(TRQ) |
YELLOW(YLW) | PINK(PNK) | BLUE(BLU) }

CLEAR removes any previous color. The abbreviation of a color in parentheses is
equivalent to the main name.

Note: For all colors, the PAINT command paints only unchanged lines within the
processed extent. For example, suppose an extent of source lines was painted yellow
and then its second line was changed using the UPDATE command. If the entire extent is
then painted blue later in the device user source, line two remains yellow whereas all
others appear in blue.

POSITION explicitly changes the current line to the requested location:

) {POSITION | POS} [TO={NEXT | FIRST | LAST}]

In case of a conflict with the requested value, the current line location remains
unchanged; for example, specifying LINE=NEXT for the last line.

QUIT unconditionally stops processing of the device user source. No parameters other
than comments are available

) {QuIT | QIT}

406 Building Applications

Device User Source

REPLACE

SCAN

REPLACE substitutes one or more lines in the generated source with source statements
in the device user source function. The deleted lines are not physically removed but are
commented out and painted in red. They are excluded from the normal processing and
are invisible to any subsequent FIND commands.

The inserted lines are the ones located between the REPLACE and the next command.

) {REPLACE | RPL} LINES={1 | <1-999>}

The actual number of lines after the current line may be less than the specified
<number>. The added lines are always inserted AFTER the current line.

SCAN searches the current line for the string specified by the FOR parameter.

) {SCAN | SCN} [FOR = <text>]
[OCCURRENCE = {FIRST | LAST | <nn>}]
where: <text> Can be up to 60
<nn> characters long
and is case
sensitive.
Is the

occurrence (up
to 70) of the
FOR text being
scanned for.

Chapter 9: Modifying Device Designs 407

Device User Source

SKIP

SKIP skips a specified group of subsequent commands in the device user source
depending on whether the search run by the command identified by the LAST
parameter failed or was successful. The skipped group begins with the command
following the SKIP command and ends with the command identified by the COMMANDS
or THROUGH parameters.

) {SKIP | SKP} [COMMANDS = {ALL | <nn>}]
[THROUGH = <tag name>]
[LAST = {FIND | SCAN }]
[IF = {FAILED | SUCCESSFUL}]

where: nn Is the number
<tag name> ©of commands
to skip

Is a label within
the device user
source defined
by the MARK
command to
delimit the
group of
commands to
be skipped.

408 Building Applications

Device User Source

Notes

m Which commands to skip is determined by the COMMANDS and THROUGH
parameters. These parameters are mutually exclusive:

The COMMANDS parameter skips either a specified number of merger
commands (<nn>) or all remaining commands (ALL) in the device user source.

The THROUGH parameter specifies the label that delimits the end of the group
of commands to be skipped. The label is defined by the MARK merger
command, which must appear after the SKIP command. If the label is not
unique, the first occurrence is used.

m When to skip a group of commands is determined by the LAST and IF parameters.

The LAST parameter specifies whether the SKIP command action depends on
the result of the previous FIND (line search within entire generated extent) or
SCAN (column search within the current line) command. FIND is the default.

The IF command specifies whether the SKIP command action depends on the
success or failure of the command identified by the LAST parameter.

Possible results are:

Value FIND SCAN

FAILED SKIP the specified SKIP the specified commands if the
commands if the TEXT FOR value was not found on the
value was not found in current line.
the current extent in the
generated source.

SUCCESSFUL SKIP the specified SKIP the specified commands if the
commands if the TEXT FOR value was found on the current
value was found in the line.

current extent in the
generated source.

m Full-line comments are not counted while skipping.

m [nserted data lines are considered as part of the preceding merger command and
are not independently counted.

Chapter 9: Modifying Device Designs 409

Device User Source

UPDATE

Notes

UPDATE replaces a portion of text in the current line. It first locates the text to be
updated within the current line using the SUBSTRING and COLUMN parameters. It then
replaces this text with the text specified by the BY parameter. If the length of the text to
be updated differs from the length of the replacement text (the default length), use the
LENGTH parameter to specify the number of characters to be replaced.

) {UPDATE | UPD} [SUBSTRING = <updated text>]
[COLUMN ={1| * | <nn>}]
BY = <updating text>
[LENGTH = [assign the value for
mm in your book]]

where nn Is the column

: * number where text

to be updated
mm

starts. The default
is 1.
The column located

by the previous
SCAN.

Is length of text to
be replaced;
defaults to length
of text specified by
the BY parameter.

m | SUBSTRING is omitted, the COLUMN parameter indicates the beginning of the

text to update.

m | SUBSTRING is specified, scanning starts from the position defined by the explicit
or default value of the COLUMN parameter.

m [SUBSTRING is specified and the scan for it failed, the current line is not updated.

m To replace multiple occurrences of the specified text in the current line, first use
SCAN to locate the beginning of the specified occurrence of the replaced text. Then
use UPDATE with COLUMN=*, which sets the column position to the position
referred to by the last SCAN.

410 Building Applications

Device User Source

Device User Source Example

This example shows how to:

m Attach device user source to a field, which is then inherited by all device entries
derived from this field.

m View and work with attached device user source from a device design

m View attached user source in the generated source of a device function; for
example, a Print File (PRTFIL) function.

Create a field; for example, DDS BARCODE (CODEABAR).

DEFINE OBJECTS My Model
Object Object Cbject Referenced Field Edit
type name attr field usage field
FLD DDS BARCODE (CODEABAR) TXT ATR
+
F3=Exit

The following steps show how to attach a device user source function to this new
field. Type Z against the field.

DISPLAY FIELDS My Model
Field reference file . : *NONE
(*ZERO) (* BLANK)]

? Field nams Type REF Length Field name Field usage
Date atr (TS#) TS# 26 AETS ATR
Date atr (TXT) TXT 25 ADTX ATE
Date key (DT#) oT# 10 BDDZ CDE
Date key (DTE) DTE 7.0 ABDT CDE
Date key (TM#) TM# 2 ABTZ CDE
Date key (TS#) TS# 26 ADTS CDE

Z DDS BARCODE (CCODEABAR) TXT 10 AFTX ATR
Field B_O1 CDE [AECD ATR
Field B_02 CDE [AFCD ATR
Field B_03 CDE [AGCD ATR
Field B_04 CDE & BHCD ATE
Field B_05 CDE [AICD ATR
Field B_0& CDE & AJCD ATR +

SEL: P-Parameters, F-Function, N-Narrative.

Z-Details, R-REF field, U-Usage, L-Locks.
F3=Exit FG5=Relocad F1l0=Define field Fll=Unreferenced fields

Chapter 9: Modifying Device Designs 411

Device User Source

Press Enter to display the Edit Field Details panel.

My Model
DDS BARCODE (CODERBAR) Document'n seq. .
TXT

Field usage: ATR
10 Data tﬁpe :
ift:

Field name . . .
TYpe
Internal length.

EDIT FIELD DETAILS

GEN name: AFTX

K'bd s Lowercase : ¥
Headings. - 0ld DDS name:
Text T DDS BARCODE (CODEABAR
Left hand side text. DDS BARCODE (CODEABAR
Ri?ht hand side text Text
Column headings. DDS BARCCDE
(CODEABAR)
Control :-
Default condition : *NONE

Check condition . : *NOMNE
Valid system name. : Mandatory fill

Fg=Conditions Fll=Field user source F20=Narrative F24=More keys

Press F11 to display the Field-Level Device Functions panel.

Field hame
FIELD-LEVEL DEVICE FUNCTICNS My Model ‘{//
Field . . . : DDS BARCODE (CODEABAR)
Device Applied
? Lang. [for] Dewvice functicn Associated with file sequence
SEL: E-Edit dewvice function source, D-Detach function
Fi=Exit FS=Relcad F9=Attach function Fl7=Services
Press F9 to define and attach the device user source function.
FIELD-LEVEL DEVICE FUNCTIONS My Model
Field . . . : DDS BARCCDE (CODERBAR)
Device Applied
? Lang. [for] Device function Associated with file sequence

ATTACH DEVICE FUNCTICON

Functicn file : ?
Functicn. . . : ?
F2=Exit

SEL: E-Edit device function source, D-Detach functieon

F3=Exit FE=Reload Fo=Attach function Fl7=5ervices

412 Building Applications

Device User Source

Specify the file to which the new function is attached, in this case File B, and create
a new EXCUSRSRC function. Type Z against the new function.

F3=Exit F5=Reload

EDIT FUNCTIONS My Model

File nams. . . : File B *k 2ND LEVEL **
? Function Function type Access path

Z Insert BARCODE keyword EXCUSRSRC *N

SEL: P-Parameters, N-Narrative, X-Select, U-Usage, C-Copy, L-Locks.

More. ..

F9=Add function F21=Copy *Template function

Chapter 9: Modifying Device Designs 413

Device User Source

Press Enter.

Type DDS instead of the current HLL name and press Enter. Note that the Type
option changes from ‘Execute user source’ to ‘Edit device user source.’ Type E
against the function to invoke SEU for the source member.

Type option identifies this as
a device user source function

EDIT FUNCTION DETATLS My Model L
Function name . . : Insert BARRCODE keyword Type : 'Edit device user source'
Received by file. : File B Acpth: *NONE
Source library. . : OPKREGEN
Source Device
? Member Language Text
E COKCYUFR DDS Insert BARCODE keyword Execute user source

SEL: E-STRSEU (Create/Update Device user source)
F3=Exit F7=0ptions Fg8=Change name F20=Narrative

Type the DDS source statements that you want applied to device entries derived
from the DDS BARCODE (CODEABAR) field.

Columns . . . : 1 71 Edit OPKCEN/QDDSSRC
SEU===> OKCYUFR
FMT A* R R T e e T T T R S R
dokdokkokkkdokkkka ok Boginning oOFf data wokok dokokkdok e sk ook ok s ok ook ok ok okok ok ok ok ko ko ok ok
0001.00 * Append field description by the BARCODE keyword.
0002.00 A BARCCDE (CODEABAR 1 (*RATIO
0003.00 A *HRITOP)

kkkkkkkkkhkkkkwkk* EFRd of data wedddd bk ddok ook ddkok kb ko ok ok ko ke ok ok ok o

Fi=Exit F4=Prompt F5=Refresh F9=Retrieve Fl0=Cursor
Fl6=Repeat find Fl7=Repeat change F24=More kevs

414 Building Applications

Device User Source

Exit and save the function. On the Edit Functions panel, select the device user

source function.

EDIT FUNCTIONS My Medel
File nanme. File B * ¥ 2ND LEVEL **
? Function Function type Access path
Device 7 Execute user source *NONE
Device 8 Execute user source *NONE
Device 9 Execute user source *NONE
Edit File B Edit file Retrieval index
X Insert BARCODE keyword Execute user source *NONE
PRTOEJ File B Print ocbject Retrieval index
PRTOBJ: Report 1lvl (Yellow) Execute user scurce *HONE
SDF example for File B Execute user source REQ for file B
Select File B Selsct record Retrieval index
More. ..
SEL: P-Parameters, N-Narrative, X-Select, U-Uesage, C-Copy, L-Locks.
F3=Exit F5=Relcad F9=Add functicn F2l=Copy *Template functicn
Press Enter.
FIELD-LEVEL DEVICE FUNCTICNS My Model
Field : DDS BARCODE (CODEABAR)
Device Applied
? Lang. [for] Device function Aggociated with file seguence
DDS Insert BARCODE keyword File B 10
Bottom
SEL: E-Edit device function source, D-Detach function
F3=Exit F5=Reload F9=Attach function Fl7=Services
'Insert BARCODE keyword' has been attached.

Chapter 9: Modifying Device Designs 415

Device User Source

From this panel you can

m Use the E option to edit the device user source

m Use the D option to detach a device user function

Press F3 to exit to the Field-Level Device Functions panel. The device user source
function, Insert BARCODE keyword, is now implicitly attached to derived entries for
the DDS BARCODE (CODEABAR) field on all device designs and is applied the next

time the device designs are regenerated.

Press F3 to exit the Edit Field Details panel.

Enter the device design of an existing PRTFIL function.

Product Product Name Product
Code Type

000000 000000OCO0OCOC00C000CO000 LOOO0000
Q00000 QO000COCO00CON000000C0O000 00000000
000000 QO000COCOC0CCO0000000CO000 00000000

Final totals

*% END OF REPCRT **

0000000000000COC000CO0000000000000000000 Print Product

As an example, you can add DDS BARCODE (CODEABAR) as a function field to the

device design (press F19).

Product Product MName Product
Code Type

Q00000 00000000CO00000000000000C0O COOL0000
000000 00000000COC00000000C0O0000 COOOO000
Q00000 0000000CCO0CO000000CO0C0C0 COOL0000

Final totals

*% END COF REPORT **

0000000000000000CO000000000C0000C00000000 Print Product

DDS BARCCODE
(CODEABAR)

0O0CO0C0000
Q000000000
O0CO0C0000

416 Building Applications

Device User Source

Position the cursor on the DDS BARCODE (CODEABAR) entry and press Enter to

display the Edit Report Entry Details panel.

EDIT REPCRT ENTRY DETAILS

Field name
GEN name

Label location
Lines kefors
Spaces before.
Column Headingsa.

Left hand side text.
Right hand side text
Display RHS text

I/0 Usage.

Fll=Entry user source

My Model
: DDS BARCODE (CODERBAR) Display length 10
: AFTX
C (Above, Before, Colum,blank) Label spacing.
2 Screen text. F (M, L, F
DDS BARCODE
(CODERBAR)
DDS BARCODE (CODERBAR)
Text
RHS zpaces . Fill LHS text. . . . : ¥
e}

Fl8=Screen attributes F24=More keys

Press F11 to view the device

user source attachments for the entry.

ATTACHED DEVICE FUNCTICHNS Mv Model

File File C Device format: Detail line.

Functicn PRTFIL File C Device entry : DDS BARCODE (CODEABAR)
Device Attached Applied

? Lang. [for] Device function Agzociated with file at level sequence
* DDS Insert BARCODE keyword File B Field 10.00

Bottom
SEL: E-Edit device function source, +/- Enabkle/Disakle, D-Detach, R-Rescope
F3=Exit F5=Reload F9=Attach functicn Fl7=Services

Chapter 9: Modifying Device Designs 417

Device User Source

3. Press F3 to exit.

View the generated result.

Device user source inserted in
generated source.

Columns . . . : 1 71 Edit OPKGEN /QDDSSRC
SEU===> OKB&PFRP
FMT DP ARNOINOZNO3T.Name++++++RLen++TDpBinPosFunctions++++++++++++++++++
0063.00 A ZDARETX 25 9TEXT ("Atr C (TXT)')
0064.00 A VDAFDZ 6 0 35TEXT ('Atr C (DTH) ')
0065.00 A EDIWRD (' / [/ ")
0066 .00 A ZDRFTX 10 ¥ 4GTEXT ('DDS BARCODE (CODERBAR
00&7.00 * Append field description by the BARCODE keyword.
0068.00 A BARCODE (CODEABAR 1 (*RATIO
0069,00 A *HRITOP)
0070.00 * 'Hidden' internal version of Atr C (DTH)
0071.00 A 99N99 ZDAFDZ 10 1SPACER (1)
0072.00 ¥emmmmmssss=s=s=ssss=ssssssssss=sssssssssss====s========s========
0073.00 A R ZEFINTTL TEXT ('Final tetale')
0074.00 A SPACEE (2)
0075.00 S T T
0076.00 A 2'Final totals'
0077.00 e e e e i b
0078.00 A R ZFENDRPT TEXT ('End of report')
0079.00 A SPACEE (2)
Fi=Exit F4=Prompt F5=Refresh FO=Retrieve Flo=Cursecr
Fl&=Repeat find Fl7=Repeat change F24=More keye

Copying Functions That Contain Attached Device User Source

Reference Field

m Device-level device user source is always copied even if the target file (ACP) is not
the same as the source file.

m Screen, report, and format level device user source is copied unless the
corresponding entity in the target function is excluded due to a change of function

type.

m Entry-level device user source is copied unless the corresponding entry in the target
function is excluded due to an access path change.

A reference field inherits all device user source attached to the original field when it is
created. Subsequent changes to device user source attached to the original field are not
reflected in the reference field.

418 Building Applications

Device User Source

Documenting Functions
The listing produced by the Document Model Functions (YDOCMDLFUN) command
indicates whether functions contain device user source. Specifying either *BASIC or

*FULL for the PRTDEVDTL parameter provides a separate summary of attached device
user source functions.

Guidelines for Using Device User Source

The following guidelines will help you decide which attachment level to specify when
attaching device user source.

Attachment Levels Are Not Hierarchical

Before attaching Device User Source, it is important for you to understand what each of
the four device user source attachment levels cover.

m Device (device-level attachment)
m Screen/Report (screen- or report-level attachment)
m Format (format-level attachment)

m Entry (entry-level attachment)

The attachment levels do not form a hierarchy. For example:

m Attaching a section of device user source at format-level does not enable it over a
field within that format.

m Attaching device user source at device-level only has relevance at device-level, not

at any lower level.

Note: This discussion does not apply to the field attachment level, which provides a
generic way to apply user source to all derived entries for a field.

Chapter 9: Modifying Device Designs 419

Device User Source

Understanding Extents

When using device user source, it is helpful to think of the CA 2E generated source as a
collection of independent source text extents rather than as a single source member.
When device user source is merged with the CA 2E source, it is merged with an extent,
not with the source member as a whole. You select the appropriate extent when you
specify the attachment level.

The following points are important to keep in mind regarding extent:

m Each extent contains a different section of code that corresponds to one of the
attachment levels.

m Each extent is entirely separate from every other one.

m One attachment level can be resolved into several non-contiguous extents. For
example, a multi-line column header can result in up to four extents.

Note: The following examples for DDS are true for SDF as well.

After all device user source is merged, the result is a DDS source file suitable for input to
the DDS compiler.

Example:

A typical PMTRCD display file might consist of the following extents, in top-down order:

Extent Description

Device extent

Format extent (key screen record format)

Entry extent (key screen 1st field entry)

Entry extent (key screen 2nd field entry)

Format extent (detail screen record format)
Entry extent (detail screen 1st field entry)
Entry extent (detail screen 2nd field entry)
Entry extent (detail screen 3rd field entry)
Entry extent (detail screen 4th field entry)
Entry extent (detail screen 5th field entry)
Screen extent (detail screen 5th field entry)

420 Building Applications

Device User Source

A common error is to attach device user source for a DDS field (entry-level extent) to the
DDS record (format-level extent) that contains the selected field. If the device user
source contains a FIND merger command to locate the selected field, the field is not
found since the scope of a FIND is restricted to the specified extent and the format
extent contains only record data definition lines.

By definition, FIND sequentially checks all available lines after the current one and stops
at the last one making it the new current line. The search has actually failed, but if SKIP
is not used, the following INSERT command places the patch after the current line, for
example, at the end of DDS format definition and not in the DDS field definition as
intended.

Chapter 9: Modifying Device Designs 421

Device User Source

Visualizing Extents

If it is not clear which attachment levels to use for a particular change, you can make a
self-educating demonstration for each external function type. To do so, produce:

m A set of device user source functions, one for each attachment level. Each function
contains only a PAINT command and comments defining the boundaries of the
extent.

m Aset of simple samples of each external function type, containing no more than
one or two fields per format.

You then attach the device user source functions to your sample external functions to
cause the device source comprising each extent to display in a separate color. The color
indicates the attachment level to which the extent belongs.

In the future when you are attempting to attach device user source to one of your
complex functions you can use these sample, painted functions as a reference to help
you locate the correct attachment point for your patch within the device design of the
function.

The following steps are basic recommendations for painting generated device source.

1. Define DDS and SDF files of STR type. For better maintainability, keep all painting
functions (see examples below) built over the two files accordingly.

2. Create ‘painting’ device user source functions, one per attachment level (Device,
Screen/Report, Format, and Entry) and per device language (DDS, SDF).

3. Name the ‘painting’ functions to reflect the attachment level that is to be painted.

4. Type in similar user source that inserts the boundary comments (<<<...>>>) and
paints the entire extent in a selected color. Use unique colors for each device user
source function within the scope of device language.

5. Attach ‘painting’ device user source functions to all available attachment points of
the selected external function. In order to cover Header/Footer entities, create a
special version of the Header/Footer function in advance, and paint it as you would
paint any external function.

6. Generate the selected external functions and enjoy seeing the fully painted device
source produced by CA 2E. This should assist you in understanding what extents are
and how to use the power of the device user source feature.

422 Building Applications

Device User Source

Examples of ‘Painting’ Functions

Device User source function ‘Paint FIELD source’ built over DDS file:

* <<<<<<<<< The beginning of FIELD extent >>>>>>>>>>
) POSITION TO=LAST
* <<<<<<<<< The end of FIELD extent >>>>>555>5555>>>

) PAINT COLOR=BLUE

Device User source function ‘Paint FORMAT source’ built over SDF file:

<<<<<<<<< The beginning of FORMAT extent >>>>>>>>>>
) POSITION TO=LAST
<<<<<<<<< The end of FORMAT extent >>>>>>>>>>>>>>>>

) PAINT COLOR=RED

Chapter 9: Modifying Device Designs 423

Device User Source

Contents of Extents

Device Extent

The Device extent covers the T*, Z*, and H* lines that are automatically generated for
CA 2E source, plus any file-level lines that are automatically generated, such as the
definition of the print key, help key, and so on. In other words, it covers every source
line from the top of the source member to the first record format definition line. For
example,

T* Test EDTRCD2 for DDS SRC Edit record(2screens)
Z* CRTDSPF

Z* RSTDSP (*YES)

H* MEMBER-ID: UUAXE2R#

*

H* Generated by :SYNON/2 Version: 1037

H* Function type:Edit record(2 screens)

*

H* Company :RMHR6MDL

H* System :RMHR6MDL

H* User name :RVH

H* Date :01/23/98 Time :15:42:00

H* Copyright :RMHRGMDL

M* Maintenance

A INDARA

A PRINT (YPRTKEY$)

A ALTHELP(CAQ1)

A ALTPAGEXCUSRPGM(CF07)

A ALTPAGEDWN (CFO8)

A CHGINPDFT

A HELP

A HLPTITLE(‘Test EDTRCD2 for DDS SRC-
A - Help')

A HLPPNLGRP (‘UUAXE2RH’ UUAXE2RH)
A*Window borders definition

A WDWBORDER ((*COLOR BLU)

A)

Note: Device user source containing format-level data, like non-standard command key
usage, such as CA01(03 ‘Exit’), should normally be attached to a record format.
However, if the device user source applies to all formats within the file it can be
attached at device-level.

424 Building Applications

Device User Source

Format Extent

The Format extent covers only those sections of the DDS source file that refer to
format-level code, such as Command key definition, SETOFs, Help specifications, and
cursor location specifications. It does not cover any of the fields that exist within that

format. For example,

R #RCDKEY

0 25

* Command keys

Help specifications
H

TEXT(‘KEY SCREEN")
SETOF (98 ‘Force input format')
BLINK OVERLAY
INDTXT(86 ‘Enable PUTOVR')
PUTOVR

CSRLOC (ZZCSRW XXCSCL)
INDTXT989 ‘’ADD’ mode’)

VLDCMDKEY (29 ‘Valid command key')
CAB3(03 ‘Exit.")

CFe9(09 ‘Change mode.’)

CFO5(05 ‘Reset.’)

CFO4(04 ‘Prompt.’)

SETOF(99 ‘Global error flag’)
SETOF(31 ‘Invalid: #1ADCD')

HLPARA (*NONE)

HLPPNLGRP (“INTRO’ UUAXE2RH)
HLPARA (*NONE)

HLPPNLGRP (‘KEY’ UUAXE2RH)
HLPARA (*NONE)

HLPPNLGRP (‘ FUNCK" UUAXE2RH)
HLPARA (*NONE)

HLPPNLGRP (‘DATAK’ UUAXE2RH)

HLPEXCLD

Reposition cursor to where?
ZZCSRW 3 OH
Z2CCL 3 OH

> ¥ ¥x>>>>P>I>I>I> ¥ ¥x>>>>>I>I>>I>>>>>>>>>>

TEXT(‘Cursor row’)
TEXT(‘Cursor Column’)

Chapter 9: Modifying Device Designs 425

Device User Source

Entry Extent

The Entry extent covers only those sections of the DDS source file that describe the
characteristics of specific device entries (fields) within a format. For example,

A #1ADCD
A

A N25

A3l

A N31

A3l
AON31N98N99

A N25

3 B 415 TEXT(‘Key code’)

CHECK(FE)
OVRDTA
DSPATR(R1)
DSPATR(UL)

DSPATR(PC)
OVRATR

Screen Extent

The Screen extent covers the message subfile and confirm prompts that appear at the

base of each screen. For example,

R #CONFIRM TEXT(“Prompt confirm’)
VLDCMDKEY (29)
OVERLAY PROTECT PUTOVR CLRL(*NO)
24 64 ‘CONFIRM. '
##CFCD 1 H TEXT (“*CONFIRM')
V#CFCD 1 B2473 TEXT(“*CONFIRM : External Image’)
CHECK(ER)
. DSPATR(HI UL)
. 9 ERRMSGID(Y2U0014 Y2USRMSG)
24 75 “(Y/N)'
R #MSGRCD TEXT(‘Program messages’)
SFLCTL (#MSGRCD)
MSGKEY SFLMSGKEY
#H#PGM SFLPGMQ
R #MSGCTL TEXT(‘Program messages’)
SFLCTL (#MSGRCD)
. SFLPAG(01) SFLSIZ(03)
. 86 OVERLAY PUTOVR
. SFLINZ SFLDSP SFLDSPCTL
. 25
.ON25 SFLEND
#HPGM SFLPGMQ

426 Building Applications

Device User Source

Device Source Extent Stamp (DSES)

The number and content of generated extents for a particular device entity varies from
one function type to another. Prior to Release 6.1, separate device user source functions
were required to produce a similar change to functions of different types.

To resolve this problem and expand the power of device user source, the generators
insert an identifying comment before each extent that is part of a device entity that has
device user source attached. The comment contains the following information:
attachment level, header/footer type, program name, and function, entity, screen,
format, and entity types. This comment is called the Device Source Extent Stamp (DSES)
and consists of the following components.

Note: Not all extents have all components.

Component Description Valid Values
A@L:n Attachment level; read as E (entry), F (format), S
Attached at Level: (screen), R (report), and D

(device)

HDR:nnnnn Header/Footer type POPUP, F/SCR, PRINT

FUN:nnnnnnnnnn Program name For example, UUABEFR

TYPE:nnnnnnn Function type EDTRCD, DSPTRN, PRTFIL,
etc.

SCR#:n Screen/Report number 1,2,3,4

RPT# :n

FMT:nnn Format type RCD, CTL, HDR, FTR, etc.

ENT:n Entity type F (field description)
1,2,3,L R(column
headers)

Special field values: P
(program name), ! (screen
title, S (selection text), #
(command key text)

Chapter 9: Modifying Device Designs 427

Device User Source

By specifying values contained in the DSES on a SCAN co

mmand, you can conditionally

test whether or not the processed extent should be modified. For example, to attach
user source to a field description rather than to a field column header, scan for ‘ENT:F’

rather than ‘ENT:1’ or ‘ENT:L’.

Note: DSES is always the first line in any extent. To ensure that the current line is
positioned at the DSES, include a POSITION TO=FIRST command in the user source.

The DSES is not protected from change, so be careful not to modify it accidentally.

Examples of Device Source Extent Stamp

This shows DSES for several contiguous extents along with comment boundaries of

each extent (<<<...>>>) that were embedded by the

Device Source Extent

attached ‘painting’ functions.

S

A 22ESEL+ 3 BH 1
L4 TheYend of FORMAT| extent
A®L; F HDR; F-=CR FUNG O JHESR YPE; El
* qqdddsqd Tha beginning of SORMAT
w cosodi o Tha and of FORMATY axbond
#A@L:F HOR: F-%CR FUMI ORKINESE TYPE:FI
L44ALEEEEL The Beginning of EMTRY 4
* PTogram name

A ZZRGM

A MZ5

1a 1 Z]

A
L4 The end of ENTRY extent
#AEL E HIOR: FA-SCR FUMG O JMESK

* «Frogram mode
A a9
A MB9

113"
113

TYPE: EDTRCD S
*® ({4 <ed The beginning of ENTRY extent >>32533235325>

EXT('Cursor Column'l
FIFRIIIFIFIIIFRIFY

TRCDZ SCRE: L FMT. HOR

exbert »Pr>rrrrrre
PR T T I

TRECOZ SCEf: 1 FMT: HORE EMT: P

HEEnt F3F2>FxrRrri

EXT(' =FROGRAM' 1
URDTA
LORCBLLY
FRIPRI IR PRI
SCR&: 1 FMT.HOR EMT. F

RID !
CHANGE

This shows the device source header including pre-processor directives *Y, *Z, and
so on. The stamp does not have screen-, format- and entry- components.

A3 T HOR: F-SCR FLING (K THESE TYFFELF
* (oL fqg44¢d The beginning of DEVICE
T# EdtRcd3 test for DSES Edit recor
2% CRTDSPF

2% ESTO=F(#YES]

H# MEMEER-ID: OKJNEZKD

TTRCTS
extent FrRRRRbiERl
dl3 =creens!

428 Building Applications

Device User Source

This shows the Detail Screen 3 (SCR#:4) containing the Confirm prompt window
description.

éH@L;S HDR: F~-ECR FUN: OKINE3K TYPE: EDTRCD3 SCRH: 4

#OUULAAASRRAA TNE DEJINNIng Ot SLREEN EBALENL Frrrrrirrrlr
A¥========= ======= —================================
A R ZCONFIRM TEXT(' Prompt confirm')
A VLDCMOKEY ([23]
A OVERLAY PROTECT PUTOUR CLRELI
A 24 64' CONFIEM:
A ZZCFCT 1 H TEXTI =CONFIRM 1
A UZ2CFCT 1 B 24 PITEXTI('=*COMFIEM @ Externsl Im

This shows the Prompt Key Details format (FMT:KEY) on the Prompt Key screen
(SCR#:1).

«@e ; F HDR: F-SCR FUN: DKINE3K TYFE: EDTRCDZ SCRE#: 1 FMT: KEY
A R R N ST e gl g U TORNAT ghlele S7A7mooass

A

A R ZRCIOKEY TEXT["KEY SCEEEN']

A SETOFI28 'Force input format
A BELIMK OUERLAY

A THOTRTI(86 'Enable PUTOUR'

A 2e PUTOUR

This shows the Date atr (DT8) field of the Detail Format 2 format (FMT:2ND) on the
Detail Screen 2 screen (SCR#:3) presented by two extents describing Left Hand Side
Text (ENT:L) and the field itself (ENT:F), respectively.

#¥0O@F HNR'FSCR_FLN_ Ok THE3K TYPE FNTRCNT _SCRH 3 FMT 2H0_FHT!
* (444 {¢e<<s The beginning of ENTRY extent »ihrbiririrzi:
Date atr (DT8]
A & 2'Date atr (DO7T8) _°'
A COLORCBLUY
* e cc The end of ENTRY extent »hbbbbbbbrbrbirrzi:
#AEL; E HOR: F-SCE_FUNM OKJIMEZK TYPE: EDTRCDE SCE# 3 FMTE 20 ENTEF
* (444{{¢e<4¢ The beginning of ENTRY extent »iireribbrzi:
Date atr (DT8]

A Z1ACDE 8 BB & ZITEXT('Date atr (DTE1")
A CHECKIRZ]

A EDTCDE(4)

A NZ5 OURDTA

A 32 DSPATRIRI FC)

A N3Z DSPATRIUL)

A HZD OURATR

¥ (00400 Cd The end of EMTRY extent >eriibriirriliriis

This shows the same field belonging now to the Detail line format (FMT:RCD) on the
only report (RPT#:1) of the function (TYPE:PRTFIL) with selected Standard Report
Header/Footer (HDR:PRINT).

#AEL: E HDF: FRIMT FUN: OKIFPFK TYFE: FRTFIL FRFTH#:i1 FMTiRCD FHT: 1
% {{{{L0A{L0S The Beginning of ENTRY extent >R300

* Date atr (DT8)

A 28' Date atr'

® <dddededd The end of ENTREY extent »>:b0050505000500>

Chapter 9: Modifying Device Designs 429

Chapter 10: Modifying Action Diagrams

This chapter describes the components that make up an action diagram, how to use the
action diagram editor, and how to edit a function’s action diagram.

This section contains the following topics:

Understanding Action Diagrams (see page 432)

Naming a Function as an Action (see page 436)

User Points (see page 440)

Understanding Constructs (see page 441)

Understanding Built-In Functions (see page 445)
Understanding Contexts (see page 501)

Understanding Conditions (see page 547)

Understanding Shared Subroutines (see page 552)
Understanding the Action Diagram Editor (see page 554)
Using NOTEPAD (see page 560)

*, ** (Activate/Deactivate) (see page 563)

Protecting Action Diagram Blocks (see page 564)

Using Bookmarks (see page 566)

Submitting Jobs Within an Action Diagram (see page 568)
Viewing a Summary of a Selected Block (see page 574)
Using Action Diagram Services (see page 575)

Additional Action Diagram Editor Facilities (see page 580)
Exiting Options (see page 585)

Understanding Action Diagram User Points (see page 587)
Understanding Function Structure Charts (see page 608)

Chapter 10: Modifying Action Diagrams 431

Understanding Action Diagrams

Understanding Action Diagrams

The Edit Database

Action diagrams record the basic constructs that make up a procedure. The action
diagram is used to specify the procedural steps that make up a CA 2E function. These
procedural steps encompass a list of actions; each action can either be a call to another
function or a number of low-level built-in functions.

Depending on where you are in CA 2E, use one of the following sets of instructions to
get to the action diagram of a function. These instructions are only provided here, in the
beginning of this chapter. Other instructions in this chapter assume that you are already
at the Edit Action Diagram panel.

When a parameter is being passed as an array there is a single subfile line that indicates
an array being passed.

Note: If the called function’s parameter interface is modified to toggle the parameter
Passed as Array field from Y to blank, the behavior of the EDIT ACTION — FUNCTION
DETAILS changes accordingly to match.

Relations Panel

To use the Edit Database Relations panel

1. Go to the function. At the Edit Database Relations panel, type F next to any relation
for the file.

The Edit Functions panel appears.
2. Go to the action diagram. Type FF next to the selected function.

The Edit Action Diagram panel appears.

The Open Functions Panel

To use the Open Functions Panel
1. Goto the action diagram.

2. Type F next to the selected function at the Open Functions panel, and then press
Enter.

The Edit Action Diagram panel appears.

432 Building Applications

Understanding Action Diagrams

The Edit Function Details Panel

To use the Edit Functions Detail panel

m |f you are at the Edit Function Details panel, press F5 to display the Edit Action
Diagram panel.

The Display All Functions Panel

To use the Display All Functions panel
1. Go to Display Services.
2. From within CA 2E, press F17.

The Display Services Menu appears.

3. Go to the list of all functions, select the Display all functions option, and then press
Enter.

The Display All Functions panel appears.
4. Go to the action diagram.
5. Type F next to the selected function and then press Enter.

The Edit Action Diagram panel appears.

Specifying an Action in an Action Diagram

To specify an action use the Action Diagram Editor with this two-step process
1. Specify where in the action diagram you want the action to execute.

2. Specify the function details for the new action.

Chapter 10: Modifying Action Diagrams 433

Understanding Action Diagrams

Adding an Action

To add an action

m Specify IA against the line in the action diagram where you want to add the action:

EDIT ACTTON DIAGRAM it SYMOL arder
FIND=> Prompt Order
I(C,I,38)F=Insert ccnstruct I(X,0)F=Insert alterrate case
IR,EQ,* +,-,=,=AF=Insert acticn IMF=Insert message

= USER: Process subfile contmol

T <<
F . 1!l Undetenmined action <<

'

F3=Frev block F5=Uszer points Fe=Cancel pending moves F23=More opticns
F7=Find Fa=Bockmark Fo=Parameters F4=lMore keys

Specifying a Function as an Action

To specify the details for the new action

m Enter F against the line just added:

EDIT ACTION DIAGRAM Edit SYMDL Crder
FIND==> Prompt Order
I(C,I,S)F=Insert construct I(¥,0)F=Insert alternate case
I(AE,Q *,+,-,=,=A)F=Insert acticon IMF=Insert message
» USER: Process subfile control
.- <
F . !l Undetermined action <<
t-- f |
F3i=Prev block F5=User points F6=Cancel pending moves F23=More opticns
F7=Find Fa=Bookmark Fo9=Parameters Fz4=More keys

Statement indicates that action has been added but is not yet specified.

434 Building Applications

Understanding Action Diagrams

Alternatively, you can add or specify a function as an action in one operation by entering
IAF in the subfile selection column.

Chapter 10: Modifying Action Diagrams 435

Naming a Function as an Action

Naming a Function as an Action

This provides a subsidiary display on which you can specify the name of the function
that constitutes the action. The display is preloaded with a ? in the Function file and
Function fields to facilitate inquiries for these fields.

For the File, you may enter one of the following special values. If the Function is
specified as ?, you will be prompted to specify a function name based on the File.

%

Use the specified function based on the current file.
?*

Prompts for all system files.
Blank

Uses the specified built-in function.
*A

Uses the specified function based on the *Arrays file.
*F

Uses the specified function field.
*M

Uses the specified function based on the *Messages file.
*|

Uses the function whose source member name is specified in the Function field.

436 Building Applications

Naming a Function as an Action

Name of file to which function is attached (blank for built-in functions or *S to
select a source member name that is specified in the function field.

EDIT ACTION DIAGRAM
FIND=-=
I(C,I,8)F=Insert cao
I(AE,Q, %, +,-,=,=R)

Edit

EDIT ACTICN - FUWCTION NAME
Product

SYMDL COrder
Prompt Order

Compute discount

> USER: Proces Function file
-- : Function.
F . 1l Undeterm : Comment
[
F3=Exit

F3=Prev block
F7=Find

F&=Cancq
Fo=Parary

F5=User points
Fg8=Bookmark

1 pending moves
eters

F23=More cpticns
F24=More keys

Name of function

*T
Uses the specified function based on the *Template file.
Name of file to which function is attached (blank for
built-in functions or *T to select a template function).
EDIT ACTION DIAGRAM Edit SYMDL Order
FIND==> Prompt Order
I e 1 == sl T
I(AE,Q,*,+,-,=,=RA) EDIT ACTION - FUﬁCTION NAME
= USER: Proces Function file Broduct
-- : Function. Compute discount
F . !l Undeterm : Comment
F3=Exit

F3=Prev block
F7=Find

Fé=Canc
F9=Parai

F5=User points
F8=Bockmark

1 pending moves
eters

F23i=More coptions
F24=More keys

Name of function

Chapter 10: Modifying Action Diagrams 437

Naming a Function as an Action

Specifying Parameters for an Action Function

If there are any parameters for the called function, you can specify which fields from
which contexts within the calling function are to be passed as parameters. To do so,

press F9.

EDIT ACTICH
FIND==>

F3=Prev blocH
F7=Find

DIAGRAM E

FE=User points
Fa=Bookmark

dit SYMDL Order
Prompt Order

s I I 0 = o L

I(AE,Q *,+,-,=,=A) : EDIT ACTION - FUNCTION NAME
EDIT ACTICN - FUNCTION DETAILS ALL PARAMETERS
F : Function file : Product
Function. . . : Compute discount
obj
ICE Parameter Use Typ Ctx Object Name
O Discounted price FLD RCD Discounted price
I Current price FLD DE1 Current price
I Discount rate FLD RCD Discount rate
4 A A
F2=Exit F5=Reload FO=Edit pafms
F10=Defaplt parms F12=Previous F15=Und=fined parfs only

Fe=Cancel pending ngoves F22=More copticns

Fo=Parametelrs

F24=More keys

Called funct

on parameters

Contexts C

alling function fields

If the function has more than eight parameters, a parameter selection field appears in
the header. Press F15 to display undefined parameters. Press F15 again to display only
those parameters that are defined with a context other than NLL. Press F15 again to

display all parameters.

Note: Changes do not occur when pressing F15. The ENTER key must be pressed to
confirm any changes to an action.

When Action Function parameters are undefined, the default model context appears in
the upper right corner where you can change it. For example, if the model default is the
WRK context you can change the value to LCL or NLL context and press F10=Default

parms.

438 Building Applications

Naming a Function as an Action

Calling a Function with a Parameter Passed as Array

B29-020
Function A

B28-020
Function B

When there is only one item passed as array, as in the above example, Ctx defaults to PAR.

For more information on parameter usage see the Parameter Usage matrix (see page 282).

Chapter 10: Modifying Action Diagrams 439

User Points

User Points

The majority of the CA 2E standard functions have default action diagrams. The
exceptions are Execute User Source (EXCUSRSRC) and Execute User Program
(EXCUSRPGM). Portions of the action diagram are essential to the program’s function,
and as such, are not alterable. However, you can insert logic into the action diagram to
add processing that is specific to that function.

The areas that you can modify in the action diagram are called user points. The user
points vary for each standard function and are accessed according to the function. User
points are identified in the action diagram of a function by arrows, made up of a
chevron and two dashes, in the right margin of the Edit Action Diagram panel.

To list and access the user points in an action diagram, press F5 to display the available
user points for the function.

The Action Diagram User Point window appears.

EDIT ACTION DIAGRAEM Edit SYMDL Customer
FIND==> Edit Customer
B = T e
I(A,E,Q,*,+ : USER EXIT POINTS Opt: ¥X,Z=Select V=Summary Key: F3=Exit

= Edit : USER: Initialize program o<
== : USER: Initialize subfile header
P USER: Initialize subfile record (existing record) I
.=RE : USER: Initialize subfile record (new record)
-*R CALC: Subfile control function fields
et USER: Validate subfile control I
PG : USER: Validate subfile record fields
=z CALC: Subfile record function fields
.= USER: Validate subfile record relations + <<

| Display screen

...Process response <
' -ENDWHILE
-ENDWHILE
. ..Closedown <--
oo
Fi=Prev block F5=User pointes Fé=Cancel pending moves F23=More options
F7=Find Fe8=Boockmark Fé=Parameters Fz4=More keys

If the user points contain user-defined action diagram statements, they are identified by
three chevrons in the right margin of the window.

For more information on individual user points for each function type, see the
Understanding Action Diagrams User Points topic, later in this chapter.

440 Building Applications

Understanding Constructs

Understanding Constructs

Constructs are the basic building blocks of an action diagram. By combining different
types of constructs, you define the procedural logic of an action diagram.

The action diagram allows those basic constructs, action and condition, to be combined
into other types of constructs. The combination constructs are as follows:
= Sequential

m Conditional

m |terative
CA 2E executes all actions in a bracket construct in order, from top to bottom.

The following is an example of the presentation convention for action diagrams.

’

-ENDCASE
Update SFL record
Read next changed SFL record

> Process subfile <=TITLE

.- <==SEQUENCE

: Read next changed SFL record

: .=REPEAT WHILE <==ITERATION

: |-Changed record found on SFl <==CONDITION
I
| .-CASE
I
| |-RCD. *SFLSEL *Zoom <==CONDITION
| |>USER DEFINED SELECTION <<<
|].-- <<<
| |:.Display user details <==ACTION <<<
| |:PAR: Date |: ‘Date of Birth’
|]"-- <<<
| |-*OTHERWISE <==CONDITION
| |>USER DEFINED LINE VALIDATION <<<
|].-- <<<
| |:.-CASE <<<
| |:|-RCD.Date of birth * GT JOB.Job date <<<
| |:].Send error message ‘Invalid DOB’ <==ACTION
| |:|PAR: Date|:'Date of Birth’
| |:"-ENDCASE <<<
| |
| {
I

: ‘-ENDWHILE

Chapter 10: Modifying Action Diagrams 441

Understanding Constructs

Sequential

Conditional

Sequential statements are the simplest of the constructs. They specify a list of actions or
other constructs that are executed in the order in which they are written. The logic that
you insert in a sequential statement is normally executed as a subroutine within the HLL
program.

Sequential statements are denoted by brackets that enclose dotted lines.

Conditional constructs allow actions to be conditionally executed within the action
diagram logic. Conditional constructs generally conform to nested IF THEN ELSE logic
statements or SELECT sets. Conditional constructs are called CASE blocks because they
are denoted by CASE and ENDCASE statements. Conditions that are more complex can
be constructed using compound conditions. You use CASE blocks to execute actions
based on the condition being tested. Actions within a condition construct are generated
as inline code.

Condition constructs are denoted by brackets that enclose broken vertical bars.

.-CASE
| -Order status is Held
| ...
| ...
! ..

-ENDCASE

442 Building Applications

Understanding Constructs

Iterative

Iterative constructs represent repetitive logic that executes when a specific condition is
true. The iterative statement is denoted by REPEAT WHILE and ENDWHILE statements.
CA 2E implements the iterative construct as an HLL subroutine. You must define a
controlling condition within the iterative loop to determine whether the logic is to be
repeated.

Note: The actions within the iterative construct are executed only while the initial
condition is true. This may require a preceding action to set the initial condition.

Iterative constructs are denoted by brackets that enclose solid vertical lines.

.=REPEAT WHILE

-Order status is Held

‘ -ENDWHILE

Chapter 10: Modifying Action Diagrams 443

Understanding Constructs

Capabilities of Constructs

You can nest constructs. For example, you can insert a conditional CASE construct within
a REPEAT WHILE construct; in this manner you test for a conditional value while the
controlling condition is executed. You can nest sequential actions within any other
construct.

.=REPEAT WHILE
| -END OF CURRENT CUSTOMERS NOT REACHED
| ...Read customers

[...
| . -CASE

| -Order value is *LT 100
| ...

!

I
I
I
I
I
I ..
| *-ENDCASE
I

-ENDWHILE

You can exit a construct at any point within the processing logic by means of either one
of two built-in functions: *QUIT or *EXIT PROGRAM.

m The *EXIT PROGRAM built-in function allows you to leave the current HLL program
or CA 2E external function.

m The *QUIT built-in function allows you to leave the current subroutine logic of the
sequential construct block or CA 2E internal function.

There are consequences for using *QUIT and *EXIT PROGRAM within constructs. Other
constructs are implemented as inline code within the current subroutine. The *QUIT
built-in function allows you to leave the current subroutine logic of the construct block.
The *EXIT PROGRAM built-in function allows you to leave the current HLL program.

.—SEQUENCE

.0rder status is Held
...Review order

. -CASE

| ...Order value is RELEASE
| <--*QUIT

‘ -ENDCASE

For more information on user points, see Understanding Action Diagram User Points at
the end of this chapter.

444 Building Applications

Understanding Built-In Functions

Understanding Built-In Functions

Add

Example

CA 2E built-in functions specify low-level operations that you can use within the user
points in action diagrams to implement a specific field manipulation or to control an
action within the action diagram.

Follow these steps to insert a built-in function at an action diagram user point.

1. Enter IAF next to the location in the action diagram where you want to insert the
function. The Edit Action - Function Name window appears.

m Leave the Function File option blank to default to the *Built in functions file.

m Enter ? for the Function option and press Enter to display a list of the built-in
functions. Alternatively, you can enter the name of the built-in function.

2. Select the built-in function you want. The Edit Action - Function Name window
appears. Press Enter to display the Edit Action - Function Details window and enter
parameters for the built-in function you selected.

3. Press Enter to continue editing the Action Diagram.

Each of the built-in functions are listed alphabetically and described on the following
pages.

The *ADD built-in function specifies an arithmetic addition on two operands.

There are three parameters for this function type:
® Two input parameters, which are the two operands.

m One output parameter, which is the *Result field containing the result of the
addition

All three parameters must be a numeric field type such as PRICE or QUANTITY.

CA 2E implements the *ADD built-in function as an ADD statement for all generators.

This is an example of the *ADD built-in function

> USER: Process detail record

WRK.Cost = RCD.Cost + RCD.Tax <<<

Chapter 10: Modifying Action Diagrams 445

Understanding Built-In Functions

Commit
The *COMMIT built-in function enables you to add your own commit points to a
program that is executing under i OS commitment control. Commitment control is a
method of grouping database file operations that allow the processing of a database
change to be either fully processed (COMMIT) or fully removed (ROLLBACK).

There are no parameters for this built-in function.

CA 2E implements the *COMMIT built-in function as an RPG COMMIT statement, and as
a COBOL COMMIT statement.

Example

The following is an example of the *COMMIT built-in function.

> USER: Create DBF record
: .Call EDTRCD function <<<
.-CASE: <<<
| -PGM.*Return code is Not blank <<<
| Rollback <<<
| <--QUIT <<<
‘ -ENDCASE <<<
Call EDTTRN function <<<
.-CASE: <<<
| -PGM.*Return code is Not blank <<<
| Rollback <<<
: | <--QUIT <<<
: | -*OTHERWISE <<<
: | Commit <<<
: ‘-ENDCASE <<<
f-- <<<

For more information about commitment control, see this module, in the chapter,
"Modifying Function Options."

446 Building Applications

Understanding Built-In Functions

Compute

The *COMPUTE built-in function enables you to define a complex arithmetic expression
using the following mathematical operators on a single compute expression line.

Operator Operation Definition

+ *ADD addition

- *SUB subtraction

* *MULT multiplication
*DIV division

\ *MODULO modulo

For more information on these operations, see, Understanding Built-In Functions *ADD,
*SUB, *MULT, *DIV, and *MODULO subtopics earlier in this chapter.

There is one output parameter, the *Result field of the object type FLD, associated with
this function type. It contains the result of the computation expression.

Note: You can define several additional parameters as needed by the details of the
compute statement.

By default, intermediate results for each operation are contained in *Synon (17,7) Work
fields. You can override the work fields with any valid field in the action diagram to
contain intermediate results.

Note: The precision of the intermediate result fields affects the overall precision of the
*COMPUTE expression. For example, the default fields are defined with a length of 7
decimal digits. Any rounding you specified for a multiplication or division operation
occurs only in the following cases:

m The intermediate result has more than 7 decimal digits
m The operation is last in the *COMPUTE expression and the length of the final result

field has fewer decimal digits than the calculation requires

To force rounding, ensure that intermediate and final result fields have the appropriate
number of decimal digits.

Chapter 10: Modifying Action Diagrams 447

Understanding Built-In Functions

Defining a Compute Expression

Enter the built-in function *COMPUTE or press F7 on the Edit Action Function Details
panel to convert an existing arithmetic built-in function to a compute expression. This
action causes the Edit Action-Compute Expression panel to display.

EDIT ACTION DIAGRAH
FIND=>
I(C,I1,5)F=Insert constr

» USER: Validate s
. RCD.Line total =
*COMPUTE ((x1

. ® 1 PGH.=5y
. x2: RCD.Ord

- x3: CON.x2E
. + ! PGH.%Sy
. x4: CON.1

-
-

Edit

SYMDL Order
Order entry clerk

I(A.E.Q % + -, = =AIF=In

. x1: RCD.Pro

.« : PGH.%Sy

F3=Prev block FbS=User points
Fe=Find FB8=Bookmark

EDIT ACTION - COMPUTE EXPRESSION

Comment .

. Ctx.Field .

Expression.

" RCD Line total =

lixixx2) + (x3+xd) :

x1 : RCD.Product price !

. : PGM.*Synon (17,7) work field = <<

w2 1 RCD.Order quantity H

/ : PGH.*Synon (17,7) work field = <<

%3 : CON.*ZERD :

__+ i PGH.*Synon (17,7) work field L L]

w4 : CON.1 H

F3=Exit SEL: F~-FF-Edit details. :

Fe=Cancel pending moves F23=Mote options
F9=Parameters F24=Mote keys

448 Building Applications

Understanding Built-In Functions

On the Edit Action - Compute Expression panel the *Compute expression appears as an
input-capable character field. Specify the arithmetic expression using the correct
mathematical formula.

CA 2E writes the correct field contexts and expressions under the compute line. You
must then use the F or FF line commands to edit the function name or the function
details associated with each pair of terms and operations in the expression.

For more information on the line commands, see the Understanding the Action Diagram
Editor topic in this chapter.

EDIT ACTION DIAGRAH Edit SYMDL Order
FIND=> Order entry clerk
I(C,I,8)F=Insert constiruct I(X,00F=Insert alternate case

I(AE,Q,%,+,-,=,=A)F=Insert action IMF=Insert message
B > USER: Validate subfile record fields

== <<
__ . RCD.Line total = * <<
_ *COMPUTE ((x1%x2) ~ (x3+x4)) <<
. . ®X1: RCD.Product price <<
. , % 1 PGH.*Synon (17.¢) work Field * <<
. . x2: RCD.Order quantity L
. . # : PGM_%Synon (17,7) work field * <<
_ . x3: CON.*2ERO <K
. . + : PGH_*Synon (17,7) work field {4
. . x4: CON.1 <<

. - <<

F3=Prev block F5=User points Fé=Cancel pending moves F23=More options
Fr=Find F8=Bookmatk F9=Parameters F24=More keys

Note: Encapsulating the compute expression in a derived field allows the expression to
be easily re-used in several functions.

Chapter 10: Modifying Action Diagrams 449

Understanding Built-In Functions

Concatenation

The *CONCAT built-in function provides the means of joining or concatenating two
discrete strings of data into a single string.

For more information on concatenating numeric data without conversion to character
data, see this topic, Convert Variable.

There are four parameters for this function type.

m Three input parameters: a character field, *String 1 of usage VRY which is the first
string to be joined; a character string, *String 2 also of usage VRY which is the
second string to be joined to *String 1; and a numeric field, *Number of blank, that
determines the number of blanks between the two strings.

The following three conditions are supplied with the *Number of blanks

parameter.
Condition Result
*None No blanks between the two strings
*One Single blank between the two strings
*All Retain all trailing blanks of the first string

450 Building Applications

Understanding Built-In Functions

®m One output parameter, which is the *Resu
the two joined strings

Iting string or the string that comprises

CA 2E implements the *CONCAT built-in function as an RPG CAT statement. In COBOL
CA 2E implements the *CONCAT function as a STRING statement.

The following example shows a concatenation function that concatenates the fields

Name and Last Name and does not put any bla

nks between the two strings.

EDIT ACTION DIAGRAM Edit SYMDL Vendor
FIND=> Edit Vendor
B B B == T
I(&,E,Q,*,+,-,=,=A) : EDIT ACTION - FUNCTICN NAME
IA : EDIT ACTION - FUNCTION DETAILS ALL PARAMETERS
: Function file :
: Function. . . : *CONCAT
obj
: IOB Parameter Use Typ Ctx Object Name
O *Resulting string FLD BCD Full Name
I *String 1 VRY FLD RCD Name
I +*String 2 VRY FLD RCD Last lame
I “*Number of blanks FLD CON *ZERO
F3=Exit F5=Reload F9=Edit parms
Fl0=Default parms F12=Previous F15=Undefined parms only
Fi=Prev block F5=User points F6=Cancel pending moves F23-More options
F7=Find Fa=Bookmark F9=Parameters F24=More keys

Chapter 10: Modifying Action Diagrams 451

Understanding Built-In Functions

The following example shows how the concatenation appears in the Action Diagram:

EDIT ACTION DIAGRAM Edit SYMDL Vendor
FIND== Edit Vendor
I({C,I,s)F=Insert construct IiX,0)F=Insert alternate case
I(A,E,Q,*,+,-,=,=R)F=Insert acticn IMF=Insert message
> USER: Validate subfile reccrd relatlicns
- <<<
RCD.Full Nams = CONCAT(RCD.Nams,RCD.Last Nams,CCON.*ZERO) <<<
[
F3i=Prev block F5=User points F6=Cancel pending moves F23i=More cptions
F7=Find Fg=Bookmark F9=Parameters Fz4=More keys

452 Building Applications

Understanding Built-In Functions

Convert Variable

The *CVTVAR built-in function specifies that the value of one CA 2E field is to be moved
to another field of a different type; that is, the two fields do not have to be of the same
domain. CA 2E converts the field values according to the assignment rules of the HLL
language in which you create the function.

An example of the use of this function might be to move a numeric code, stored in a
CDE field, into a NBR field.

Note: To convert among date (DTE, DT#, TS#), time (TME, TM#), and number (NBR) data
types, use the *MOVE built-in function instead.

You can also use the *CVTVAR built-in function with the ELM context to move data
between a field and a data structure. In CA 2E a data structure is equivalent to a single
element array. This provides a method for decomposition or (re)composition of field
data in a single operation.

For example, you can use this technique to compose a complex data string into a single
parameter required by a system API (Application Interface Program) or a third party
application. Conversely, you can use this technique to decompose and recompose a
telephone number or postal code.

For more information on the ELM context field, see Understanding Contexts in this
chapter.

There are two parameters associated with the *CVTVAR function type:

® One input parameter (*FACTOR2)—The field of any attribute or domain that is to
be moved.

Note: Fields with a context of CND or CON are not appropriate for the *CVTVAR
input parameter.

m One output parameter—The *Result field, also of any attribute or domain, into
which the field is to be moved.

By default, CA 2E implements the *CVTVAR built-in function as an RPG MOVEL
statement when moving from a numeric field into an alphanumeric field. CA 2E uses an
RPG MOVE statement when moving from an alphanumeric field into a numeric field. CA
2E implements the *CVTVAR function as a COBOL MOVE statement.

If the *Result field is longer than the moved field the result field is blanked out or
converted to zeroes prior to the move. Any excess characters are converted to blanks or
zeros.

Note: If you move an alphanumeric field to a numeric field, COBOL does not convert
spaces to zeroes. This can cause decimal data errors.

Chapter 10: Modifying Action Diagrams 453

Understanding Built-In Functions

Example 1

Example 2

This example shows how to move a number into a code field.

EDIT ACTION DIAGRAM

Edit SYMDL Vendor

FIND=> Edit Vendor
B = T o = = o
I(A,E,Q*,+, -,=,=4) EDIT ACTICON - FUNCTION NAME
IA EDIT ACTICN - FUNCTICH DETAILS ALL PARAMETERS

Functicn file

Functieon. *CVTVAR

Obj

ICB Parameter Use Typ Ctx Object Name

G *Result FLD RCD Vendor Code

I +*Factor 2 FLD JOB *Job number

¥ F3=Exit F5=Reload F9=Edit parms

F10=Default parms F12=Previous

F15=Undefined parms only

F3i=Prev block F5=User points F6=Cancel pending moves F23=More cpticns
F7=Find F8=Bockmark F9=Parameters F24=More keys

This example shows how to decompose a field (Customer postal code) into a structure
defined by an array.

EDIT ACTION DIAGRAM

Edit SYMDL Customer
FIND== Edit Customer
s = B - = 1=
I(A,E,Q, *,+,-,=,=RA) EDIT ACTICN - FUNCTICN NAME
IA EDIT ACTICN - FUNCTICHN DETAILS ALL PARAMETERS

Functicn file

F10=Default parms
F2-Prev block
F7=-Find

F5=User pointe
F8=Bookmark

F12=Previous

Functieon. *CVTVAR
Obj
ICB Parameter Use Typ Ctx Cbject Name
O *Result ARE EIM Array
I *Factor 2 FLD RCD Customer postal code
F3=Exit F5=Reload F9=Edit parms

F15=Undefined parms only
F6=Cancel pending moves
Fo9=Parameters

454 Building Applications

F23=More cpticns
F24=More keys

Understanding Built-In Functions

Date Details

The *DATE DETAILS built-in function returns information about a given date; for
example, day of week, length of month, or whether it is in a leap year. You specify the
kind of information you need using the *Date detail type parameter.

Note: You should check the return code set by this function in order to catch any errors
encountered.

There are seven parameters for this function type:

Six input parameters:

*Date is the date for which information is to be returned. A field of type NBR is
interpreted as the number of days since January 1, 1801 (day one).

*Date detail type specifies the kind of information returned for the *Date field.
See the table at the end of this topic.

*Excluded days of week specifies days that are normally excluded from the
operation; for example, weekends.

*Date List name specifies the name of an existing date list. Date lists let you
override selection rules set by the *Excluded days of week parameter for
particular dates; for example, holidays. The specified date list needs to be in
the *Date Lists array when the built-in function executes.

*Date List autoload specifies whether the function automatically loads the date
list into the *Date Lists array when it executes.

*Select days/dates lets you reverse the selection determined by the *Excluded
days of week and *Date List name parameters. The default is to provide date
details for included days only.

One output parameter, *Date detail. This field contains the requested information
for the input date. Its meaning is determined by the *Date Detail Type.

For more information on the selection input parameters, see the Selection Parameters
for Date Built-In Functions subtopic later in the Date Details topic.

The possible values for the *Date detail type and the effect of each on the meaning of
the output field are summarized in the following table.

*Date Detail Type Values

Effect on the *Date Detail Parameter

*ABSOLUTE DAY The result is the number of days that have

elapsed since January 1, 1801 (the day one) for
the given date.

*DAY OF YEAR The result is an integer from 1 to 366, specifying

the number of selected days that have elapsed
since the beginning of the given year.

Chapter 10: Modifying Action Diagrams 455

Understanding Built-In Functions

*Date Detail Type Values

Effect on the *Date Detail Parameter

*DAY OF MONTH

The result is an integer from 1 to 31, specifying
the number of selected days that have elapsed
since the beginning of the given month.

*DAY OF WEEK

The result is an integer from 1 to 7, specifying
the number of selected days that have elapsed
since the beginning of the given week. The days
of the week are numbered sequentially
beginning with 1=Monday.

*SELECTED?

The result specifies whether the given date was
selected. See the *Select Days/ Dates parameter.

1=the date was selected.

O=the date was not selected.

*MONTH

The result is an integer from 1 to 12, specifying
the month of the given date.

*MONTH LENGTH

The result is an integer specifying the number of
selected days in the month for the given date.

*YEAR The result is the year of the given date, in the
format YYYY.
*LEAP YEAR? The result specifies whether the given dateisin a

leap year.
1=the date is in a leap year.

O=the date is not in a leap year.

*YEAR LENGTH

The result is the number of selected days in the
year for the given date.

Note: The result in *Date detail reflects only selected days unless you specify
*ABSOLUTE DAY, *MONTH, *YEAR, or *LEAP YEAR for *Detail type.

456 Building Applications

Understanding Built-In Functions

Example

Suppose you want to calculate the day of the week an order was placed. For example, if

the order date was, August 4, 1994, the result is Thursday. Following are parameter
specifications for the *DATE DETAILS built-in function that produce this result. Scroll to
view the *Selected days/dates parameter.

EDIT ACTICMN DIAGRAM Edit SYMDL Customer
FIND=> Edit Customer
B R s = = o
I(R,E,Q, %, +,-,=,=R] : EDIT ACTION - FUNCTICON NAME
EDIT ACTION - FUNCTICON DETATILS ALL PARAMETERS
IA : Function file
: Functicn. . . : *DATE DETAILS
obj
ICB Parameter Uszse Typ Ctx Object Name
O *Date detail FLD WEK Day of Week
I +DATE FLD WRK Order date
I *Date detail type FLD CND *DAY OF WEEK
I *Excluded days of week FLD = CND *NO
I *Date List name FLD = CND *NOC
I +*Date list autcload FLD = CND *NO +
. F3=Exit F5=Reload F9=Edit parms
: Fl0=Default parms F12=Previous F15=Undefined parms only
F32=Prev block F5=User points F6=Cancel pending moves F22=More options
F7=Find Fa=Bookmarlk F9=Paramsters F24=More keys

To insert this *DATE DETAILS built-in function into the action diagram, press Enter.

EDIT ACTION DIAGRAM Edit SYMDL Customer
FIND==> Edit Customer
I(C,I,5)F=Insert construct Ii¥X,0)F=Ineert alternate case
I{A,E,Q,*, +,-,=,=A)F=Insert action IMF=Insert messags
= USER: Validate subfile record relations
- e
WRK.Day of Week = WRK.Order date *DAY OF WEEK <<
o
F3=Prev block F5=User points Fé=Cancel pending moves F23=More optiocons
F7=Find F8=Bookmark F9=Parameters F24=More keys

Chapter 10: Modifying Action Diagrams 457

Understanding Built-In Functions

Selection Parameters for Date Built-In Functions

This topic gives details about the selection parameters for the *DATE DETAILS, *DATE
INCREMENT, and *DURATION built-in functions. It also discusses the related *Date list
autoload parameter. The selection parameters are

m *Excluded days of week

m *Date List name

m *Select days/dates

Note: For the *DATE INCREMENT and *DURATION built-in functions, you can specify a

value other than *NO or NONE for the selection parameters only if the *Duration type
parameter is *DAYS.

*Excluded Days Of Week

This parameter is a condition field or derived field of type STS. Use this parameter to
specify days that are normally to be excluded from an operation; for example, weekends
or days not worked by part-time employees.

Each value you specify for this parameter consists of seven digits. Each digit can be 1 or
0 and corresponds to a day of the week beginning with Monday. A 1 indicates that the

day is to be included in the operation; a 0 indicates that the day is to be excluded.

The possible values are shown in the following table.

*Excluded Days of Week Values Description and Examples

*NO Include all days of the week. The value is
1111111.

*SUNDAY Exclude Sundays. The value is 1111110.

*SATURDAY Exclude Saturdays. The value is 1111101.

*SATURDAY, Exclude Saturdays and Sundays. The value

SUNDAY is 1111100.

User-defined You define which days of the week to

include and exclude; for example, if your
department works Tuesday through
Saturday, define a condition with value
0111110.

458 Building Applications

Understanding Built-In Functions

You can modify the selection rule set by this parameter using the other two selection
parameters.

m Use *Date List name to exclude or include particular dates.

m Specify *EXCLUDE for *Select days/dates to reverse the effect of the selection; in
other words, to select excluded days.

m *Date List Name
This parameter specifies the name of an existing date list.

Date lists let you override the selection rules set by the *Excluded days of week
parameter for particular dates; for example, holidays. A date list consists of a unique
name, a list of dates, and a 1 or O for each date to indicate whether to include or
exclude the date. To use a date list, specify its name on the *Date List name parameter.

Note: You can specify dates for different years on the same date list.

The default for *Date List name is NONE; in other words, no date list is specified. This
value is required in the following cases.

m The *Duration type parameter is other than *DAYS on the *DATE INCREMENT and
*DURATION built-in functions.

m The *Date detail type parameter is *¥ABSOLUTE DAY, *MONTH, *YEAR, or *LEAP
YEAR on the *DATE DETAILS built-in function.

When a date built-in function uses a date list executes, it expects to find the specified
*Date List name in the *Date Lists array. This array and the function needed to create it
are shipped with CA 2E. Each element of the array is comprised of the following fields:

Field Name Type

*Date List Name VNM Key
*Date absolute day NBR Key
*Date flag STS Atr

Chapter 10: Modifying Action Diagrams 459

Understanding Built-In Functions

For more information on arrays, see Building Access Paths, in the chapter "Defining
Arrays."

To load a date list into the *Date Lists array you can do one of the following:

m Write instructions in the action diagram to load the information into the array
before executing the built-in function.

m Specify *YES for the *Date list autoload parameter. The *Date list autoload
parameter determines whether the function is to automatically load the specified
date list into the *Date Lists array, if it does not find the name in the array. The
possible values are

- *YES: The specified *Date List name is automatically loaded from the *Date
List Detail file into the *Date Lists array when the built-in function executes.
You can specify *YES only when *Date List name is other than NONE.

- *NO: You need to provide instructions in the action diagram to load the date
list into the *Date Lists array before executing the built-in function.

To create date lists for use with the *Date list autoload capability, you can use the Work
with Date List function that is shipped with CA 2E in the *Date List Header file. The
information you enter is stored in the *Date List Header and *Date List Detail files.

The *Date List Header and *Date List Detail physical and logical files are supplied in the
generation library in addition to being defined in the model. If you want to maintain
these files, you need to regenerate and compile them.

Notes:

m You need to generate and compile the Work with Date List function into your
generation library. You invoke it using its implementation name.

m Before you can compile functions with *Date list autoload set to *YES, you
need to generate and compile the PHY, RTV, and UPD access paths for the
*Date List Detail file.

Suppose Company ABC is closed for business on certain holidays. The following example
shows a date list, created using the Work with Date List function that excludes those
holidays.

460 Building Applications

Understanding Built-In Functions

Wark with Date Tdst
Dete List reme HOLITEY-US Description United States Holidays

Type cetians, press Enter.
4Telete

ot Dete O-Bxclhaded Description

1-Inchaked

10194 O MNew Year's Tay

11754 0 Martin Inther Kirg Jr's

22184 0 President's Day

53084 O Mecrial Cay

70494 0O Irdepardiance Day

9054 0 Labcr Day
112494 0O Therkegiving Day
112884 0 Day after Therksgiving
122694 0 Christmas Day Chesrved

F3=Fxit M=Prapt F=AE Flidelete

You can create a similar date list to inc/lude days that are not considered normal
business days. For example, suppose the employees of Company ABC are required to
work on a Saturday for the company inventory. The date list would contain an entry like
the following.

70994 1 Company Inventory Day

You can reverse the effect of the selection rule set by a date list by specifying *EXCLUDE
for the *Select days/dates parameter; in other words, you can select excluded days
instead of included days.

*Select Days/Dates

This parameter lets you reverse the selection set by the *Excluded days of week and
*Date List name parameters. Normally, only included days are selected and considered

by a date built-in function. This parameter lets you select excluded days instead.

The possible values for this parameter are shown in the following table.

*Select Days/ Dates Values Effect on the Output of the Date Built-In
Function
*INCLUDED Select only days that are either

Flagged as included on the *Date List.

2. Not excluded by *Excluded days of week
and not flagged as excluded on the *Date List.

This is the default.

Chapter 10: Modifying Action Diagrams 461

Understanding Built-In Functions

*Select Days/ Dates Values

Effect on the Output of the Date Built-In
Function

*EXCLUDED

Select only days that are either
Flagged as excluded on the *Date List.

Excluded by *Excluded days of week and not
flagged as included on the *Date List.

This lets you reverse the default selection.

*NO

The default is automatically changed to *NO
when the built-in function does not require
selection; for example, when *Duration type is
not *DAYS or when *Date details is *ABSOLUTE
DAY. If the built-in function requires selection,
you cannot specify *NO.

462 Building Applications

Understanding Built-In Functions

Date Increment

The *DATE INCREMENT built-in function lets you add a quantity to a given date. You
specify the kind of quantity to add using the *Duration type parameter. Note that you
should check the return code set by this function in order to catch any errors
encountered. This function is the converse of the *DURATION function.

The *DATE INCREMENT built-in function performs the operation:

*Datel = *Date2 + *Duration

There are eight parameters for this function type:
® Seven input parameters

- *Date2 specifies the beginning date. If it is of type NBR, it is interpreted as the
number of days since January 1, 1801 (day one).

- *Duration specifies the quantity to be added to the beginning date. Its meaning
is determined by the value of *Duration type.

- *Duration type specifies the meaning of the quantity to be added to the
beginning date. See the table at the end of this topic.

- *Excluded days of week specify days that are normally not to be included in the
sum.

- *Date List name specifies the name of an existing date list. Date lists let you
override selection rules set by the *Excluded days of week parameter for
particular dates. The specified date list needs to be in the *Date Lists array
when the built-in function executes.

— *Date list autoload determines whether the function is to automatically load
the specified date list into the *Date Lists array when the function is executed.

- *Select days/dates lets you reverse the date selection determined by the *Date
List name and *Excluded days of week parameters. The default is to select
included dates.

m One output parameter, *Datel, which specifies the result date. If it is of type NBR,
it is interpreted as the number of days since January 1, 1801 (day one).

For more information on the selection input parameters briefly described here, see the
Selection Parameters for Date Built-In Functions topic in the *DATE DETAILS built-in
function description.

The possible values for *Duration type and the effect each has on the meaning of the
*Duration parameter are shown in the following table.

*Duration Type Values Effect on the *Duration Parameter

Chapter 10: Modifying Action Diagrams 463

Understanding Built-In Functions

*Duration Type Values

Effect on the *Duration Parameter

*DAYS

Number of selected days to add to the
specified date (*Date2). This is the default.

*MONTHS

Number of full months to add to the
specified date (*Date2). Partial months
are ignored.

*YEARS

Number of full years to add to the
specified date (*Date2). Partial years are
ignored.

*YYMM

Number of years and full months in YYMM
format to add to the specified date
(*Date2); partial months are ignored. For
example, 1011 means 10 years and 11
months; 1100 means exactly 11 years.

*YYMMDD

Number of years, months, and days in
YYMMDD format to add to the specified
date (*Date2). For example, 100923
means 10 years, 9 months, and 23 days;
110000 means exactly 11 years.

464 Building Applications

Understanding Built-In Functions

Example

Suppose you want to calculate the next interest payment date for a loan where an
interest payment is due every 20 days, not including weekends. For example, if the last
payment date was, August 4, 1994, the next interest payment is due, September 1,
1994. Following are parameter specifications for the *DATE INCREMENT built-in
function that produce this result. Scroll to view the *Date list autoload and *Selected
days/dates parameters.

EDIT ACTICN DIAGRAM Edit SYMDL Loan Payment
FIND== Prompt Loan Payment
B A s =T s = L
I(A,E,Q,* +,-,=,=R) : EDIT ACTICN - FUNCTION NAME
In EDIT ACTION - FUNCTICN DETATILS ALL PARAMETERS
: Function file
Function. . . : *DATE INCREMENT
[e)=5]
ICB Parameter Use Typ Ctx Object Name
O *Datel {(ending) FLD WRE Next Payment Date
I +*Date2 (beginning) FLD WRE Last Payment Date
I “*Duration (factor) FLD CON 20
I *Duration type FLD = CND *DAYS
I *Excluded davs of week FLD > CND *SATURDAY, SUNDREY
I *Date List name FLD = CND *NOC +
F3=Exit F5=Reload F9=Edit parms
F10=Default parms F12=Previous F15=Undefined parms only
F3=Prev block FE5=User points Fé=Cancel pending moves F23=More options
F7=Find Fa=Boockmark Fo9=Parameters F24=More keve

To insert this *DATE INCREMENT built-in function into the action diagram, press Enter.

EDIT ACTICN DIAGRAM Edit SYMDL Order
FIND== Enter Customer Orders
I(C,T,8)F=Insert construct T(¥,0)F=Ineert alternate case
I(A,E,Q,*,+,-,=,=R)F=Ineert action IMF=Insert message
= USER: Validate subfile reccord relaticns
- <
WRK.Next Payment Date = WRK.Last Payment Date + CON.20 *DAYS <<=
[
F3=Prev block F5=User points F6=Cancel pending moves F23=More cptions
F7=Find F8=Bookmark Fo=Paramesters F24=More keys

For more information on *DATE INCREMENT, see Calculation Assumptions and
Examples for Date Built-In Functions at the end of this section.

Chapter 10: Modifying Action Diagrams 465

Understanding Built-In Functions

Divide

Example

The *DIV built-in function specifies an arithmetic division of one field by another. You
can specify the shipped field *Rounded to determine whether the result of the division
is half-adjusted or not; CA 2E provides two conditions for this purpose.

There are four parameters for this function type:

m Three input parameters which are the dividend (*FACTOR1), the divisor
(*FACTOR?2), and the *Rounded field.

m One output parameter which is the *Result field containing the result of the
division.

*FACTOR1, *FACTOR2, and the *Result field must all be numeric field types.

CA 2E implements the *DIV built-in function as an RPG DIV statement and as a COBOL
DIVIDE statement.

This is an example of how to use the *DIV built-in function.

> USER: Process detail record

:—CTL. Average value = WRK.Total val/WRK.Total <<<
no.

Divide with Remainder

The *DIV WITH REMAINDER built-in function specifies an arithmetic division of two
fields with the remainder being stored in an additional field.

There are four parameters for this function type:

m Two input parameters, which are the dividend (*FACTOR1) and the divisor
(*FACTOR2).

m Two output parameters which are the *Remainder field and the *Result field
containing the result of the division.

All parameters must be numeric field types.

CA 2E implements the *DIV WITH REMAINDER built-in function as an RPG MVR
statement, and as a COBOL DIVIDE statement followed by a COBOL MOVE statement.

466 Building Applications

Understanding Built-In Functions

Duration

The *DURATION built-in function calculates the elapsed time between a beginning date
and an ending date.

Note: You should check the return code set by this function in order to catch any errors
encountered. This function is the converse of the *DATE INCREMENT built-in function.

The *DURATION built-in function performs the operation:

*Duration = *Datel — *Date2
The result is positive if *Datel is after *Date2; it is negative if *Datel is before *Date2.

There are eight parameters for this function type:
® Seven input parameters

- *Date2 and *Datel specify the beginning and ending dates, respectively. When
either date is of type NBR, it is interpreted as the number of days since January
1, 1801 (day one).

- *Duration type specifies the meaning of the result of the operation. See the
table at the end of this topic.

- *Excluded days of week specifies the days to exclude from the operation; for
example, weekends or days not worked by part-time employees.

- *Date List name specifies the name of an existing date list. Date lists let you
override normal selection rules set by the *Excluded days of week parameter
for particular dates. The specified date list needs to be in the *Date Lists array
when the built-in function executes.

- *Date list autoload determines whether the function automatically loads the
specified date list into the *Date Lists array when the function is executed.

- *Select days/dates lets you reverse the selection determined by the *Excluded
days of week and *Date List name parameters. The default is to select included
dates.

m One output parameter, *Duration. The meaning of this parameter is determined by
the value of *Duration type.

Note: The *Date list, *Excluded days of week, and *Select days/dates parameters affect
only days/dates after the beginning date. If the ending date is before the beginning
date, these parameters affect only days/dates after the ending date.

For more information on the selection input parameters, see the Selection Parameters
for Date Built-In Functions topic in the *DATE DETAILS built-in function description.

The possible values for *Duration type and the effect each has on the meaning of
*Duration are shown in the following table.

Chapter 10: Modifying Action Diagrams 467

Understanding Built-In Functions

Elapsed Time

*Duration Type Values Effect on the *Duration Parameter

*YEARS The result is given as a number of full years; partial
years are ignored.

*MONTHS The result is given as a number of full months; partial
months are ignored.

*YYMM The result is given as a number of years and full
months in YYMM format; partial months are ignored.
For example, 1011 means 10 years and 11 months;
1100 means exactly 11 years.

*YYMMDD The result is given as a number of years, months, and
days in YYMMDD format. For example, 100923 means
10 years, 9 months, and 23 days; 110000 means
exactly 11 years.

*DAYS The result is the number of selected days. This is the
default.

The *ELAPSED TIME built-in function calculates the elapsed time between a beginning
time and an ending time. It is the converse of the *TIME INCREMENT built-in function.

The *ELAPSED TIME built-in function performs the operation:
*Elapsed Time = *Timel — *Time2
The result is positive if *Timel is after *Time2; it is negative if *Time1l is before *Time2.

There are four parameters for this function type:
m Three input parameters

- *Time2 and *Time1 specify the beginning and ending times, respectively. When
either time is of type NBR, it is interpreted as the elapsed time since 0 a.m.

- *Time unit specifies the meaning of the *Elapsed time output parameter.
m One output parameter, *Elapsed time. The meaning of this parameter is

determined by the value of *Time unit.

The valid values for *Time unit and the effect each has on the meaning of *Elapsed time
are shown in the following table.

*Time Unit Values Effect on the *Elapsed Time Parameter

*SECONDS The result is given as an integer specifying the number
of elapsed seconds.

468 Building Applications

Understanding Built-In Functions

Exit Program

Example

*Time Unit Values Effect on the *Elapsed Time Parameter

*MINUTES The result is given as the number of elapsed minutes;
partial minutes are ignored.

*HOURS The result is given as the number of elapsed hours;
partial hours are ignored.

*HHMM The result is given as the number of elapsed hours and
minutes in HHMM format.

*HHMMSS The result is given as the number of elapsed hours,
minutes, and seconds in HHMMSS format.

The *EXIT PROGRAM built-in function specifies an exit from a program.

The only parameter for this built-in function is the *Return code. You can use the
*Return code parameter to inform the calling program of the circumstances under
which the program was exited.

CA 2E supplies the *Return code field from the PGM context as an input parameter, by
default. You can also supply alternate conditions to the *Return code field, other than
those supplied by default, such as *Record does not exist.

CA 2E implements the *EXIT PROGRAM built-in function as a call to a CA 2E supplied exit

subroutine, ZYEXPG. This issues an *EXIT PROGRAM in COBOL or in RPG. If closedown
program is specified, RPG also sets on the LR indicator.

The following is an example of the *EXIT PROGRAM built-in function.

> Fast exit <<<
.—CASE: <<<
|-CTL. *CMD key is CF13 <<<
| *Exit program — return code CND. *User QUIT request <<<
‘- -ENDCASE

Chapter 10: Modifying Action Diagrams 469

Understanding Built-In Functions

Modulo

The *MODULO built-in function specifies the remainder of a division of two fields. The
*MODULO function provides more control over the remainder precision and is a single
value field as opposed to the *DIV With Remainder, which returns two values. This
allows this function to be used in *COMPUTE functions.

There are four parameters for this function type:

m Three input parameters which are the divisor, the dividend of the division
operation, and a ¥*Quotient definition field. The latter specifies the field domain to
be used in defining the intermediate work field generated by *MODULO to contain
the quotient of the intermediate division operation.

m One output parameter, a *Result field that contains the result of the entire
*MODULO function.

Note: The final result of the *MODULO operation depends greatly on the field domain
defined for both the *Quotient definition field and the *Result field. For example,
suppose you want to calculate the modulo for the following expression:

5.30 / 2.10 = 2.5238

The following table shows three different modulo values (*Result) for this operation due
to the field length defined for the *Quotient definition field and the *Result field.

Length of *Quotient Length of *Result Quotient Modulo
Definition Field Field (Work Field VValue) (*Result value)
4.0 6.4 2 11

4.2 6.4 2.52 .0080

4.2 6.2 2.52 .00

470 Building Applications

Understanding Built-In Functions

Move

You can use the *MODULO built-in function as a sub-function to the *COMPUTE built-in
function, thereby determining the remainder of a division operation within the compute
expression.

CA 2E implements the *MODULO built-in function using similar code to *DIV (with
remainder).

Example

This is an example of the *MODULO built-in function.

>USER: Process detail record

: WRK.MODULO Field = RCD.EXT Price\RCD.Quantity <<<

’

The *MOVE built-in function specifies that the value of one field is to be moved to
another.

There are two parameters for this function type:

m One input parameter, which is the field that is to be moved (*FACTOR?2).

m One output parameter, which is the *Result field into which the field is moved.

For all but date and time fields, the moved and result fields must either both be numeric

or both be alphanumeric field types. Refer to Considerations for Date and Time Field
Types at the end of this topic for details about date and time conversions.

Note: If CND is specified for the context of *FACTOR2 and the field is a status field, the
condition must be a VAL condition. If the field is not a status field and CND is specified,
the condition must be a CMP condition with an operation of EQ.

CA 2E implements the *MOVE built-in function as an RPG Z-ADD statement for numeric

fields and as a MOVEL statement for alphanumeric fields; in COBOL CA 2E implements
the *MOVE function as a MOVE statement.

Example

This is an example of the *MOVE built-in function.

> USER: Process subfile record

Execute another function <<<
PGM. *Reload subfile = CND. *Yes <<<

Chapter 10: Modifying Action Diagrams 471

Understanding Built-In Functions

Move Array

The *MOVE ARRAY built-in function lets you move multiple instances of an array. To
specify an array subfield, specify the Array Subfield name, Array Name, and Array Index
(Element Number).

Use *MOVE ARRAY in the following ways:

m Move the value of one array subfield into another array subfield, either in the same
array or a different array.

m Move the value of an array subfield into a field in a non-array context, for example,
WRK or LCL.

m Move the value of a field in a non-array context or a constant value or a valid
condition into an array subfield.

Note: In all these cases, the special value *ALL can be used in place of a field name. *ALL
pertains to all fields in the specified array.

For more information and examples, see the *MOVE ARRAY Examples (see page 473).

When using the *MOVE ARRAY function, the array must be a multiple-instance array,
using the ARR context, or a parameter context where the parameter is defined as a
multiple-instance array parameter.

For a working scenario using the *MOVE ARRAY built-in function, see the Appendix How
to Create a Deployable Web Service Using a Multiple-instance Array (see page 743).

Move Array Parameters

The *MOVE ARRAY built-in function uses the following parameters.
Note: The first three parameters define the target field, and the last three parameters
define the source field:
*Result
The target field or the special value *ALL
*Array
The array in which the target field exists (if it is an array subfield)
*Array index

The index number which specifies the element of the array in which the target field
exists (if it is an array subfield)

*Factor 2

The source field or the special value *ALL

472 Building Applications

Understanding Built-In Functions

*Array
The array in which the source field exists (if it is an array subfield)
*Array index
The index number that specifies the element of the array where the source field

exists (if it is an array subfield)

Within the Action Diagram, the syntax of each group of three fields is as follows (when
*Array and *Array index are specified):

array-context.array(array-index-context.array-index) .array-subfield

Unlike most function calls, some of the parameters, and their contexts, to the *MOVE
ARRAY built-in function can be blank, as shown in the following examples.

Move Array Examples

Use *MOVE ARRAY in the following situations:

m Move an array subfield within a specified element of an array into another array
subfield, either in the same array or a different array.

In this example, the Product price subfield in the element of the Product Array,
which the current value of the Order line field specifies, is set to the value held in
the Item price subfield in the first element of the Item Array:

EDIT ACTION DIAGRAM Edit Product

FIND=> Called program
I(C,I,S)F=Insert construct I1(X,0)F=Insert alternate case
I1(A,E,Q,%,+,-,=,=A)F=Insert action IMF=Insert message

EDIT ACTION - FUNCTION DETAILS
Function file :
Function., . . : *MOVE ARRAY

Parameter Typ Object Name
*Result FLD Product price
*Array ARR Product Array
*Array index FLD Order line
*Factor 2 FLD Item price

*Array ARR Item Array
*Array index FLD 1

F3=Exit F5=Reload F9=Edit parms
F10=Default parms Fl2=Previous F15=Undefined parms only

This Action Diagram statement displays as:

ARR.Product Array(WRK.Order line).Product price =
ARR.Item Array(CON.1).Item price

Chapter 10: Modifying Action Diagrams 473

Understanding Built-In Functions

® Move an array subfield into a field in a non-array context, for example, a field in the
WRK context.

In this example, the Product price field in the WRK context is set to the value held in
the Item price subfield in the element of the Item Array specified by the current
value of the Order line field:

EDIT ACTION DIAGRAM Edit Product

FIND=> Called program
I(C,I,8)F=Insert construct I(X,0)F=Insert alternate case
I1(R,E,Q,%,+,-,=,=A)F=Insert action IMF=Insert message

EDIT ACTION - FUNCTION DETARILS
Function file :
Function. . . : *MOVE ARRAY

Parameter Object Name
*Result WRK Product price
*Array ARR

*Array index FLD

*Factor 2 FLD Item price

*Array ARR Item Array
*Array index FLD Order line

F3=Exit F5=Reload F9=Edit parms
F1@=Default parms F12=Previous F15=Undefined parms only

This Action Diagram statement displays as follows:

WRK.Product price = ARR.Item Array(WRK.Order line).Item price

474 Building Applications

Understanding Built-In Functions

Move a field or value (including conditions and constants) in a non-array context

into an array subfield.

In this example, the Product price subfield in the element of the Product Array
specified by the current value of the Order line field is set to a value of 12.50:

EDIT ACTION DIAGRAM
FIND=>
I(C,I,S)F=Insert construct

I(AR,E.Q.x,+,-,=,=A)F=Insert action

EDIT ACTION - FUNCTION DETAILS

Function file :

Function., . . : *MOVE ARRAY

Parameter
*Result
*Array
*Array index
*Factor 2

Product

Called program
I1(X,0)F=Insert alternate case
IMF=Insert message

Object Name

Product price

Product Array
Order line

12.50

*Array
*Array index

F3=Exit F5=Reload F9=Edit parms
F10=Default parms Fl2=Previous F15=Undefined parms only

This Action Diagram statement displays as follows:

ARR.Product Array(WRK.Order line).Product price = CON.12.50
Move Array Usage

If you specify the ARR context, in addition to the code required for the *MOVE ARRAY
function, CA 2E generates code to define the required array structures. Therefore, you
can define these arrays automatically by using the *MOVE ARRAY function. When you
generate a *MOVE ARRAY statement, CA 2E generates additional code that checks for
array indexing errors.

Multiple instance arrays in 2E are 1-based; the first element in an array is element 1.
You cannot specify a constant value (CON context) less than 1 or greater than the
maximum number of elements in the array in the Action Diagram Editor. However, if
you specify a runtime field value less than 1 or greater than the maximum number of
elements in the array in the *Array index field, you receive an error.

Chapter 10: Modifying Action Diagrams 475

Understanding Built-In Functions

If an array indexing error occurs, the PGM.*Return code field is set to a condition value
of "*Array index error', which corresponds to the Y2U0068 message in the Y2USRMSG
message file. This error can be monitored for as in the following example:

WRK.Product price = ARR.Item Array(WRK.Order line).Item price
.-CASE

-PGM.*Return code is *Array index error

<-- *QUIT

' -ENDCASE

If *Result or *Factor 2 is not an array subfield, the following restrictions apply to that
field:

m The related *Array and *Array index fields must be blank.
m The context specified must be one that would be valid in a *MOVE statement.

— The valid contexts for *Result are PGM, LCL, WRK and NLL (including any valid
parameter context, if the function has an appropriate output parameter).

— The valid contexts for *Factor 2 are PGM, JOB, LCL, WRK, CND and CON. This
context includes any valid parameter context, if the function has an
appropriate input parameter.

If *Result or *Factor 2 is an array subfield then the following restrictions apply to that
field.
m The related *Array and *Array index fields cannot be blank.

— The *Array index can be a positive integer constant with a value greater than 0
and less than or equal to the number of elements in the array, or refer to a
numeric variable with no decimal places.

— The *Array index cannot itself be a subfield of a multiple-instance array.

m The context specified for *Result or *Factor 2, and the related *Array, must be one
of the following contexts:

ARR
Valid for both *Result and *Factor 2.
PAR

Valid for *Result if the specified field exists as an Output, Both or Neither
parameter field on a multiple-instance array parameter. Valid for *Factor 2 if
the specified field exists as an Input, Both or Neither parameter field on a
multiple-instance array parameter.

PRn
nis an integer 1-9.

Same validity as PAR, but used where the function has duplicate parameters.

476 Building Applications

Understanding Built-In Functions

If *ALL is specified for either *Result or *Factor 2, the following restrictions apply:

m Certain context-specific restrictions apply when you specify here *ALL is specified:

- If you specify *ALL for *Result, also specify *Factor 2 and vice-versa.

- If you specify *ALL for *Result, you cannot specify CND and CON as the context

for *Factor 2.

- If you specify *ALL for *Factor 2, you cannot specify NLL as the context for
*Result.

m Code is only generated to move a field if all the following conditions apply:

— The field exists in both the *Factor 2 context and the *Result context

- Ifthe *Factor 2 context is a parameter context, the field must have a usage of
O,BorN

— If the *Result context is a parameter context, the field must have a usage of |, B

orN

m Any target fields (or target array subfields) that exist in the *Result context, but do
not exist in the *Factor 2 context, are not changed.

Note: The same field type validation rules apply to *MOVE ARRAY as to *MOVE, in
terms of moving numeric fields to non-numeric fields.

From the main Action Diagram Editor screen, you can use the subfile option I=M to
insert and prompt the *MOVE ARRAY built-in function.

Considerations for Date and Time Field Types

The following table summarizes conversions the *MOVE and *MOVE ARRAY built-in
functions handle automatically for fields that represent dates and times.

To NBR DTE D8# DT# TME TM# TS#
From (DT8) *
NBR + + + 1 + 3 7
DTE + + 0 0 - - 5
D8# (DT8) * + 2 + 0 - - 5
DT# 2 0 0 + - - 5
TME + - - - + 3 6
T™# 4 - - - 4 + 6
TS# 8 9 9 9 10 10 +

Chapter 10: Modifying Action Diagrams 477

Understanding Built-In Functions

To NBR DTE D8# DT# TME TM# TS#
From (DT8) *

* Conversions for the shipped D8# and the user-defined DT8 (8-digit
internal representation) data types are identical.

Explanations of codes used in this table:
+ No conversion.
— Does not apply.
0 Type conversion between internal formats.
1 Convert from CYYMMDD.
2 Convert to CYYMMDD
3 Insert delimiters.
4 Remove delimiters.
5 Convert date-to-date part of timestamp, time part is set to 0.
6 Convert time-to-time part of timestamp, date part is not affected.
7 Move numeric value as 6-digit nanoseconds part of timestamp.
(Timestamp format is yyyy-mm-dd-hh.mm.ss.nnnnnn.)
8 Move 6-digit nanoseconds part of timestamp to numeric field.
(Timestamp format is yyyy-mm-dd-hh.mm.ss.nnnnnn.)
9 Move date part of timestamp to date field.

10 Move time part of timestamp to time field.

m Since no conversion is provided, you can move numeric date fields to and from a

NBR field to save or set up internal representations of DTE (CYYMMDD) and 8#/DT8

(YYYYMMDD) fields. This is useful, for interfacing with a 3GL file. The following
moves are valid:

Valid Moves
DTE NBR DTE

D8# NBR D8#

Note: It is not valid to use a NBR field as an intermediary between DTE and D8# (DT8)

since these require a conversion. The following section contains the list of invalid
moves.

478 Building Applications

Understanding Built-In Functions

Invalid Moves

The following moves are not valid:

DTE NBR D8#

D8# NBR DTE

When you move a constant into a date, time, or timestamp field, the required format

for the constant depends on the type of the target field. The required formats are
shown in the following table.

Required Format for Constant Target Date/Time Field
CYYMMDD or YYMMDD DTE
YYYYMMDD D8t (DT8)
YYYY-MM-DD DT#
HHMMSS TME
HH.MM.SS TM#
YYYY-MM-DD-HH.MM.SS TS#

For more information on the date and time field types, see Defining a Data Model in the
chapter "Understanding Your Data Model," Using Fields topic.

Chapter 10: Modifying Action Diagrams 479

Understanding Built-In Functions

Move All
The *MOVE ALL built-in function specifies that all of the fields from one context are to
be moved to another context by name. You can specify up to four source contexts.
Note: You cannot use CON, CND, and WRK contexts as *Result contexts for this built-in
function.
There are potentially five parameters for this function type:
m Up to four input parameters, which are the four source contexts that can be moved.
m One output parameter which is the *Result context field. For each field in the result
context, CA 2E examines the source contexts in the order in which you specify them
in the *MOVE ALL action, to determine instances of the same field.
Note: Function fields are not included by *MOVE ALL. You must explicitly move function
fields to a new context using the *MOVE built-in function.
The *MOVE ALL built-in function performs a series of moves from one context to
another, mapping fields by name.
CA 2E implements the *MOVE ALL built-in function as an RPG Z-ADD statement for
numeric fields and as a set of MOVEL statements for alphanumeric fields. In COBOL, CA
2E implements the *MOVE function as a set of MOVE statements.
Example

In this example, for a given function, the PAR and DB1 contexts contain slightly different
groups of fields as listed in the following table:

PAR. Customer code DB1. Customer code
PAR. Customer name DB1. Start date
PAR. Credit limit DB1. Customer name

PAR. Start date
PAR. Customer group

480 Building Applications

Understanding Built-In Functions

All of the fields in the PAR context could be initialized by a single statement. This is done
by inserting a *MOVE ALL function with the following parameters on the Edit Action -

Function Details window:

F10=Default parms F12=Previous

F3=Prev block
F7=Find

F5=User points
F8=Bockmark

EDIT ACTICN DIAGRAM Edit

FIND="=>

I(C,I,S)F=Ingert CO cuueiinnninn.

I(R,E,Q,*, +,-,=,=R)

IA EDIT ACTION - FUNCTICN DETAILS
Functicn file
Functicn. *MOVE ALL
IOB Parameter Use
O *Result context CTX
I *Source context 1 CTX
I *Source context 2 CTX
I *Source context 3 CTX
I *Scource context 4 CTX
F3=Exit F5=Reload

Fo=Edit parms
Fl15=Undefined parms only
F6=Cancel pending moves
Fo9=Paramsters

Order
Enter Customer Orders

ALL PARAMETERS

CkJ

Typ Ctx Object Name
FLD PAR *ALL

FLD DE1 *ALL

FLD CON *BLANK

FLD

FLD

Fz3i=More options
F24=More kevs

In other words:

PAR = DB1, CON By name <<
This is equivalent to:

> USER: Process DBF record
:PAR. Customer code = DB1.Customer code <<<
:PAR. Customer name = DBl.Customer name <<<
:PAR. Start date = DB1l.Start date <<<
:PAR.Credit limit = CON.*ZERO <<<
:PAR. Customer group = CON.*BLANK <<<

Chapter 10: Modifying Action Diagrams 481

Understanding Built-In Functions

Multiply

Example

The *MULT built-in function specifies an arithmetic multiplication of two fields.

The *Rounded field allows you to specify whether the result of the multiplication is to
be half-adjusted. Specify the condition *ROUNDED for rounding; specify the condition *
for no rounding.

Rounding consists of adding 5 (-5 for a negative result) one position to the right of the
last decimal position specified for the length of the result field. As a result, rounding
occurs only when the number of decimal positions in the result value exceeds the
number of decimal positions in the result field length.

There are four parameters for this function type:

m Three input parameters which are the two fields that are to be multiplied
*FACTOR1 and *FACTOR2, and the *ROUNDED field.

m One output parameter the *Result field.
FACTOR1, FACTOR2, and the *Result field must all be numeric.

CA 2E implements the *MULT built-in function as an RPG MULT statement. In COBOL,
CA 2E implements the *MULT function as a MULTIPLY statement.

This is an example of the *MULT built-in function.

> USER: Process detail record

: RCD.Line value = RCD.Quantity * RCD.Price <<<

482 Building Applications

Understanding Built-In Functions

Quit

The *QUIT built-in function specifies an exit from an action diagram sequence construct
or user point; when you specify the *QUIT function, all subsequent steps in the
construct (or subroutine) are bypassed.

When you specify the *QUIT function within a sequential construct, CA 2E defines a
branch to the end of the subroutine.

If you use the *QUIT function outside of a sequential construct, CA 2E defines a branch
to the closest, most recently nested, subroutine which, in many instances, is the user
point. To limit the action of *QUIT, you can enclose actions within a sequential
construct.

There are no parameters for this built-in function.

CA 2E implements the *QUIT built-in function as a GOTO statement for both RPG and
COBOL.

Example

In the following example, the step Update database is not executed if errors occur:

: ..Validate fields

: ..Validate relations
1 .-CASE

: |-If errors

: | <--QUIT

: ‘-ENDCASE

: ..Update database

Chapter 10: Modifying Action Diagrams 483

Understanding Built-In Functions

Retrieve Condition

New Topic

The *RTVCND built-in function specifies that the name of a given condition is to be
retrieved into a function field. This can be of particular use if you want to show the full
description of a condition next to the condition on a panel or report.

The convert condition values command (YCVTCNDVAL) creates a file that stores the
condition data. This file is in the generation library whenever you execute it.

There are two parameters for this function type:

m One input parameter, which is the status field name

m One output parameter, which is the work field into which the condition is retrieved

Both parameter fields are of usage type vary (VRY).

To specify that the description of the current value of the Gender field should be shown
in the Gender Name field of an EDTRCD function, you could add a Gender Name field to
the function’s device design, and insert the following action in the function’s action
diagram:

> USER:

: DTL.Gender name = Condition name of DTL.Gender <<<

You can provide Retrieve Condition functionality with F4 prompting by setting the CUA
Prompt (YCUAPMT) model value to *CALC and inserting the *RTVCND built-in function
at a CALC: user point in the action diagram.

For more information on the *CALC value for the YCUAPMT model value, see the CA 2E
Command Reference, the YCHGMDLVAL command.

484 Building Applications

Understanding Built-In Functions

Rollback

The *ROLLBACK built-in function allows you to add your own rollback points to a
program that is executing under i OS commitment control. Commitment control is a
method of grouping database file operations that allows the processing of a database
change to be either fully processed (COMMIT) or fully removed (ROLLBACK).

There are no parameters for this function type.

CA 2E implements the *ROLLBACK built-in function as an RPG ROLBK statement and as a
COBOL ROLLBACK statement.

For more information on the commit built-in function, see the example with the
information on COMMIT in the start of this topic.

Chapter 10: Modifying Action Diagrams 485

Understanding Built-In Functions

Retrieve Field Information

The *RTVFLDINF built-in function specifies that the meta-information about a field is to
be retrieved into one or more fields.

Meta-information about a field consists of information about the field itself (the field
textual name, the DDS name of the field, the field length, and so forth.), irrespective of
the current value of the field. This can be of use if you want to build SQL statements to
retrieve information from the file containing the field or if you want to write your own
utilities to retrieve information about model objects (for instance, for documentation).
The parameters for the *RTVFLDINF function are:

m There is one input parameter (*Field name). This is the 25-character name of the
field for which you want to retrieve meta-information. You can specify any valid
field context for this parameter, except LCL. Screen contexts (for example, DTL) are
allowed, as is the DB1 context.

m Qutput parameters as follows:
m *Field name
m *Field DDS name (see Note 1)
m *Field internal DDS name (see Note 2)
m *Field text
m *Field surrogate
m *Field domain surrogate (see Note 3)
m *Field attribute code (see Note 4)
m *Field external data type
m *Field external length
m *Field external integers
m *Field external decimal positions
m *Field internal length
m *Field internal integers
m *Field internal decimal positions
m *Field contextual name (see Note 5)
m *Field internal data type

m If any output parameter is specified using the NLL context, no code is
generated for them.

486 Building Applications

Understanding Built-In Functions

Note 1: If the field passed in the input parameter specified with the DB1 context, this
returns the name of the field on the file, including the 2-character file prefix. If the field
is passed in any other context, this returns the name of the field with the appropriate
2-character program prefix (WU for a field in the WRK context, and so forth)

Note 2: This is the (typically 4-character) name of the field as it appears in the model,
without any prefix.

Note: 3: If the field passed in the input parameter is a REF field, this parameter returns
the surrogate number of the field to which it is referenced, otherwise it returns the
same value as is returned in the *Field surrogate parameter.

Note 4: This is the 3-character field attribute, for example, VNM, TXT, CDE, NBR and so
on. If the field is a REF field, the attribute of the referenced field is used.

Note 5: This is the name of the field as it is used in the program. For RPG programs, if
the field is specified in the DB1 context, this value is the same as the *Field DDS name,
except that it has the rename prefix applied to it instead of the file prefix. For all other
contexts, this parameter has the same value as the *Field DDS name. For COBOL
programs, this field contains the fully qualified name of the field as it is used in the
program.

Chapter 10: Modifying Action Diagrams 487

Understanding Built-In Functions

Set Cursor

The *SET CURSOR built-in function allows you to explicitly position the cursor on any
field on the device design by specifying the field name and the context to which it
belongs. In addition, the *SET CURSOR built-in function allows you to control cursor
positioning based on the occurrence of errors.

There are two input parameters for this function type:

m Field name on which the cursor is positioned

m *Override error field that is conditional and can take a value of *YES or *NO. It
determines whether cursor positioning takes place based on the occurrence of an
error

For more information on device designs, see the chapter "Device Designs."

Note: You cannot use *SET CURSOR to override cursor positioning due to errors

generated by display files such as values list errors on status fields. These errors are

implemented below the level of the application program in the display device or file.

The following is an example of the Set Cursor function.

In this example, if the Customer Status field is Active, move the cursor to the Customer

Name field.
EDIT ACTICHN DIAGRAM Edit SYMDL Driver
FIND==> Prompt Driver
I(C,I,8)F=Insert construct I(¥,0)F=Insert alternate cage
I(R,E,Q,*, +,-,=,=R)F=Insert actiocn IMF=Insert message

> USER: Validate relations

L-- <<

-CASE e
-DTL.Customer status is Active e
-8et Cursor: DTL.Customer Name (*Overrride=*YES) <<<
-ENDCASE <<
i
F3=Prev block F5=User points F6=Cancel pending moves F23=More options
F7=Find Fa=Bookmark F9=Parameters

The following diagram shows the parameters for the example.

488 Building Applications

Understanding Built-In Functions

EDIT ACTION DIAGRAM
FIND==>
I({C,I,s)F=Ingert co
I(R,E,Q,*, +,-,=,=R)

Edit

» USER: Validate detail scr

EDIT ACTICN -
Function file

FUNCTION DETAILS

Function. *SET CURSOR
CobJ
IOE Parameter Usze Typ Ctx Object Name
O *Panel field CT¥ FLD DTL Customer Name
I *Override CTKX FLD CND *YES

F3=Exit
F10=Default parms

F5=Reload
F12=Previous

F3=Prev block
F7=Find

F5=User points
Fe=Boockmark

EDIT ACTION -

Fe=Cancel pending moves
F9=Parameters

SYMDL Compute

Edit Customer

FUNCTION NAME

ALL PARAMETERS

FO=Edit parms

F15=Undefined parms only

F23i=More cptions
F24=More keys

Chapter 10: Modifying Action Diagrams 489

Understanding Built-In Functions

Substring

The *SUBSTRING built-in function allows you to extract a portion of a character string
from one field and insert it into another.

There are five parameters for this function type:

m Three input parameters which are a character string, *String 1, denoting the
character substring that is to be extracted, the *From position field denoting the
position from which the extraction of the character string occurs, and the *For
length field denoting the length of the character substring to be extracted.

m Two output parameters which are the *Resulting string into which the extracted
substring is inserted and a *Return code to determine the result of the attempted
insertion. Return code is an implied parameter and is set to condition *NORMAL
when insertion completes successfully.

The *For Length field has two special conditions: *FLDLEN which indicates that the
entire length of the field or constant is to be used and *END which means that the
extraction occurs from the position of the *From position field to the end of the field or
constant.

CA 2E implements the *SUBSTRING built-in function in RPG using the SUBSTR statement
in COBOL using the STRING statement. For COBOL 85, it uses a reference modification
and for COBOL, 74 it is uses string manipulation.

The following is an example of a substring function.

This example extracts the first six characters from the Full Name field.

EDIT ACTION DIAGEAM Edit SYMDL customer
FIND== Edit Customer
I(C,I,S)F=Insert construct I{¥,0)F=Insert alternate case
I(A,E,Q,*, +,-,=,=4A)F=Ingert action IMF=Insert message

= CALC: Screen function fields

R

. WRK.First 6 char of name = SUBSTRING(WRK=Full name,CCN.1, CON.§) =<
"
Fi=Prev block F5=User points Fe=Cancel pending moves F23=More cptiocns
F7=Find F8=Bookmark F9=Parameters F24=More keys

490 Building Applications

Understanding Built-In Functions

Subtract

The following diagram contains the parameters for the previous example.

EDIT ACTION DIAGRAM Edit SYMDL Compute
FIND== Edit Customer
Ii(C,I,8)F=Insert co
I(A,E,Q, %, +,-,=,=4)
> CALC: Screen function fle : EDIT ACTION - FUNCTICN NAME
EDIT ACTION - FUNCTION DETAILS ALL PARAMETERS
Function file :
Function. . . : *SUBSTRING
obj
ICB Parameter Use Typ Ctx Object Name
O *Resulting string CT¥ FLD WRK First & char of name
I *etringl VREY FLD WRE Full name
I *From position FLD CoN 1
I *For length FLD CON 6
F3=Exit F5=Reload F9=Edit parms
F10=Default parms F12=Previous F15=Undefined parms only
Fi=Prev block F5=Uszer points Fe=Cancel pending moves F22=More options
F7=Find Fe=Bookmark F9=Parameters Fz4=More keys

The *SUB built-in function specifies an arithmetic subtraction on two operands,
*FACTOR1 and *FACTOR2.

There are three parameters for this function type:

Two input parameters which are the two operands, *FACTOR1 and *FACTOR2.

One output parameter which is the *Result field containing the result of the
subtraction.

All three parameters must be numeric field types.

CA 2E implements the *SUB built-in function as an RPG SUB statement and as a COBOL
SUBTRACT statement.

Chapter 10: Modifying Action Diagrams 491

Understanding Built-In Functions

Time Details

The *TIME DETAILS built-in function returns information about a given time. You specify
the type of information you need using the *Time Detail parameter.

There are three parameters for this function type:

® Two input parameters

m *Time is the time for which information is to be returned. If it is of type NBR, it
is interpreted as the elapsed time since 0 am.

m *Time detail type determines the meaning of the output parameter, *Time
detail.

m One output parameter, *Time detail, returns the requested information for the

specified time.

The possible values for the *Time detail type parameter and the effect of each on the
meaning of the result are summarized in the following table.

*Time Detail Type Values Effect on the *Time Detail Parameter

*SECONDS An integer from 0 to 59 specifying the number of
seconds in the specified time (*Time).

*ELAPSED SECONDS An integer containing the number of elapsed seconds
since 0 am for the given time (*Time).

*MINUTES An integer from 0 to 59 specifying the number of
minutes in the specified time (*Time).

*ELAPSED MINUTES An integer specifying the number of elapsed minutes
since 0 am for the specified time (*Time).

*HOURS An integer from 0 to 23 specifying the number of
hours in the specified time (*Time).

*HHMM The number of hours and minutes represented by the
given time (*Time) in HHMM format.

*HHMMSS The number of hours, minutes, and seconds
represented by the given time (¥*Time) in HHMMSS
format.

*PM? An integer that indicates whether the given time is

am or pm. The possible values are 1=pm and O=am.

492 Building Applications

Understanding Built-In Functions

Time Increment

The *TIME INCREMENT built-in function lets you add a quantity to a given time. It is the
converse of the *ELAPSED TIME built-in function.

The *TIME INCREMENT built-in function performs the operation:

*Timel = *Time2 + *Elapsed Time

There are four parameters for this function type:

m Three input parameters

m *Time2 specifies the beginning time. If it is of type NBR, it is interpreted as the
elapsed time since 0 am.

m *Elapsed time specifies the quantity to be added to *Time2.

m *Time unit specifies the meaning of the *Elapsed time input parameter. Refer
to the table at the end of this description.

m One output parameter, *Timel, specifies the ending time. If it is of type NBR, it is
interpreted as the elapsed time since 0 am.

The number of hours in the sum is factored by 24 to produce an integer from 0 to
23. In other words, if the number of hours is 24 or greater, the hours are divided by
24. The final number of hours in the *Timel parameter is the remainder of the
division. For example, if the sum is 64 hours and 32 minutes, the result in *Timel is
16 hours and 32 minutes (64/24=2 + a remainder of 16).

The possible values for the *Time unit parameter and the effect of each on the meaning
of *Elapsed time are shown in the following table.

*Time Unit Values

Effect on the *Elapsed Time Parameter

*SECONDS An integer specifying the number of seconds to add to
the specified time (*Time2).

*MINUTES An integer specifying the number of minutes to add to
the specified time (*Time2).

*HOURS An integer specifying the number of hours to add to the
specified time (*Time2).

*HHMM The number of hours and minutes, in HHMM format, to
add to the specified time (*Time2).

*HHMMSS The number of hours, minutes, and seconds, in HHMMSS

format, to add to the specified time (*Time2

Chapter 10: Modifying Action Diagrams 493

Understanding Built-In Functions

Calculation Assumptions and Examples for Date Built-In Functions

Since months and years do not contain equal numbers of days, date calculations
involving these units are adjusted to conform to common sense standards rather than
to pure mathematical accuracy. This section presents assumptions made to the output
results for the *DATE INCREMENT and *DURATION built-in functions. A set of examples
explain possibly confusing results and show recommended function usage.

CA 2E makes the following assumptions to provide consistent results for the *DATE
INCREMENT and *DURATION functions independent of the input value:

m Duration between "today" and "today" equals O days.

m Duration between "today" and "tomorrow" equals 1 day.

m Since mathematical necessity requires that either the Start date or the End date not
be counted when calculating date duration or date increment, CA 2E does not count
the Start date (*Date2).

Note that this is significant only when you have explicitly excluded specified dates
from calculations using selection parameters or a date list.

Business and Everyday Calendars

Business Calendar

Since the calculation units (months/years) are not always equally long, the idea of a
business calendar and an everyday calendar are introduced here to help explain the
results produced by the *DATE INCREMENT and *DURATION built-in functions.

If you specify *DAYS for the *Duration Type parameter, CA 2E bases its calculations on a
user-defined "business" calendar. You define a business calendar using the *Excluded
Days of Week and *Date List Name parameters to specify working days, non-working
days, holidays, and other special days for your business.

The resulting "day-centric" calculations are always mathematically accurate because all
units (days) are equally long. In other words, date calculations based on a business
calendar are easily understood.

494 Building Applications

Understanding Built-In Functions

Everyday Calendar

If you specify a value other than *DAYS for the *Duration Type parameter, CA 2E bases
its calculations on an "everyday" calendar in which all seven days of each week are
included in the calculations. Date Lists and *INCLUDED/*EXCLUDED selections are not
used by definition; so all issues associated with these parameters can be ignored.

The resulting "month-centric" calculations are not always mathematically accurate
because the units involved are not equally long. The results of such calculations are
often approximate because CA 2E adjusts them to common sense standards rather than
to mathematical accuracy. For example, December 31, 1995 (*Date2) incremented by 2
months (*Duration) returns a result of February 29, 1996 (*Datel) rather than the
arithmetically correct February 31, 1996!

The remainder of this section gives examples of specific assumptions CA 2E makes to
adjust results to common sense standards and to produce consistent results.

*DATE INCREMENT Rules and Examples

*DATE INCREMENT performs the following operation:

Start date + Increment = End date

m |f a Start date is incremented by one unit (month/year), the End date is the same
day in the next unit.

Start date Increment End date
January 05, 1996 1 (*MONTH) February 05, 1996
January 05, 1996 1 (*YEAR) January 05, 1997

m [f a Start date that is the last day of a month is incremented by one unit
(month/year) and the next unit (month/year) is shorter than the current one, the
End date is adjusted to the last day of the next unit.

Start date Increment End date
March 31 1996 1 (*MONTH) April 30, 1996
February 29, 1996 1 (*YEAR) February 28, 1997

Chapter 10: Modifying Action Diagrams 495

Understanding Built-In Functions

As a result, the End date for the one-unit increment case is always within the
contiguous unit, which can be the next or previous unit depending on the sign of
the increment.

m The one-unit (month/year) increment case can be generically expanded to any
combination of month(s) and/or year(s)

Start date Increment End date
May 31 1996 4 (*MONTH) September 30, 1996
December 30, 1993 102 (*YEAR) February 28, 1995

m When the Start date is the last day of the unit (month/year) it is always associated
with the last rather than with the same day of the End unit.

Start date Increment End date

February 29 1996 -1 (*MONTH) September 30, 1996
December 30, 1993 102 (*YEAR) February 28, 1995
Start date Increment End date

February 29, 1996 -1 (*MONTH) January 31, 1996

(not January 29)

February 29, 1996 2 (*MONTH) April 30, 1996
(not April 29)

m The *DATE INCREMENT result can be reversed for any day other than the last day of
the month by simply changing the sign of the increment. Following is an example
where the operation is reversible.

Start date Increment End date
January 13, 1996 1 (*MONTH) February 13, 1996
February 13, 1996 -1 (*MONTH) January 13, 1996

Following is an example where the operation is not reversible.

Start date Increment End date
Jnuary 29, 1996 1 (*MONTH) February 29, 1996
February 29, 1996 -1 (*MONTH) January 31, 1996

496 Building Applications

Understanding Built-In Functions

m The most confusing effect deriving from processing the last day of a month is that
different Start dates (usually close to the last day of the Start month) give the same
End date (always the last day of the End month) when incremented by the same

unit.
Start date Increment End date
January 29, 1996 1 (*MONTH) February 29, 1996
January 30, 1996 1 (*MONTH) February 29, 1996
January 31, 1996 1 (*MONTH) February 29, 1996

This is a good example of the approximate calendar calculations mentioned
previously.

Note: The everyday calendar can be widely used for business purposes. For
example, to process a bank statement when the billing cycle is defined as a time
interval between the first and the last day of every month.

m When the increment unit is composed of days, months, and years (*YYMMDD),
then calculation is broken into two steps. First, the Start date is incremented by the
months/years. Second, the adjusted intermediate date is incremented by days.

Start date Increment End date

November 29, 1993 10315 (*YYMMDD) March 15, 1995

Following are the steps used to produce this result; namely, the Start date is
incremented subsequently by 1 year, then by 3 months, and then by 15 days:

Start date Increment End date
1. November 29, 1993 1 (*YEARS) November 29, 1994
2. November 29, 1994 3 (*MONTHS) February 28, 1995

(Note that the last
day is adjusted.)

3. February 28, 1995 15 (*YYMMDD) March 15, 1995

Note: The (*YYMMDD)' increment may not always be equal to (*DAYS); for example, if
days were excluded from the calendar using a Date List or a selection parameter.
However, the (*YEARS) and the (*MONTHS) always equal (*YYMMDD) and the
(*YYMMDD).

Chapter 10: Modifying Action Diagrams 497

Understanding Built-In Functions

*DURATION Rules and Examples

*DURATION performs the following operation:
End date - Start date = Duration

The *DURATION function result is often not as obvious and easily predictable as the
*DATE INCREMENT result. For example, what is the duration expressed in *MONTHS
between Start date (December 31, 1995) and End date (February 29, 1996)? The
function returns two months even though three months are involved in the calculation.
This is another example of the Everyday calendar’s approximation.

The remainder of this section gives examples of specific assumptions CA 2E makes to
adjust results to common sense standards and to produce consistent results.

m The *DURATION function counts a month if the number of covered days is greater
than or equal to the number of days in the End date month. A Duration month is
defined as the number of days in the End date month. Note that the first day of a
duration interval is never counted.

Start date End date Duration Actual Days
December 31,1995 January 31, 1996 1 (*MONTHS) 31
December 19, 1995 January 23, 1996 1 (*MONTHS) 35
December 28,1995 January 23, 1996 0 (*MONTHS) 26
January 31, 1996 February 29,1996 1 (*MONTHS) 29

m The *DURATION function counts a year if any twelve consecutive months are
covered. This is the definition of a Duration year. Note that the first day of a
duration interval is never counted.

Start date End date Duration Actual Days
December 31, 1995 December 31,1996 1 (*YEARS) 365
December 31, 1996 December 31,1997 1 (*YEARS) 365
June 30, 1996 June 30, 1997 1 (*YEARS) 365

498 Building Applications

Understanding Built-In Functions

m For the *YYMMDD duration type, DD represents the number of days not included in
either the Duration year (YY) nor the Duration month (MM).

Start date End date Duration Actual Days
November 12, 1995 March 23, 1997 1 (*YEARS) 497
November 12, 1995 March 23, 1997 16 (*MONTHS) 497
November 12, 1995 March 23, 1997 104 (*YYMM) 497
November 12, 1995 March 23, 1997 10410 (*YYMMDD) 497

Following are the steps used to produce this result.

a.

Calculate years. From within the range of dates, identify any whole years
consisting of 12 consecutive whole months. For example, December 1, 1995 to
November 30, 1996 =1 year.

Calculate months. From within the remaining dates, identify any whole
months; in this example, December 1996 + January 1997 + February 1997 =3
months.

Calculate days. All that remains from the original date range are parts of the
first and last months in the range; namely, November 12, 1995 to November
30, 1995 (18 days) and March 1, 1997 to March 23, 1997 (23 days). The total
number of remainder days is 41 (18 + 23 = 41). Since 41 days is greater than the
Duration month of 31, add one month to the total number of months (3+1=4
months).

Recall that the DD portion of the *YYMMDD duration type represents the
number of days not included in either the Duration year (YY) or the Duration
month (MM). In other words, Remainder days (DD) — Duration month = 10 days
(41-31=10).

The final result in *YYMMDD format is 10410.

m The *DURATION function calculates one month if both the Start and End dates
represent the same day in contiguous months.

Start date End date Duration Actual Days
December 1, 1995 January 1, 1996 100 31

January 1, 1996 December 1, 1995 -100 =31
February 12, 1995 March 12, 1995 100 28
February 12, 1996 March 12, 1996 100 29

Chapter 10: Modifying Action Diagrams 499

Understanding Built-In Functions

Application of this rule sometimes causes different, but close, Start and End dates
to return the same duration.

Start date End date Duration Actual Days
May 19, 1996 June 20, 1996 102 32
May 20, 1996 June 20, 1996 100 (2) 31
May 21, 1996 June 20, 1996 100 30
May 22, 1996 June 20, 1996 029 29

(1) The End month, June, has 30 days; so the Duration month
in this example is 30. DD=Actual Days—Duration month=02.
(2) The arithmetic result 101 is adjusted to 100 since the Start
and End dates represent the same day in contiguous months.

m The *DURATION function calculates one year if both Start and End dates represent
the same day and month in contiguous years.

Start date End date Duration Actual Days
December 8, 1995 December 8, 1996 10000 366
February 1, 1995 February 1, 1996 10000 365
February 1, 1996 February 1, 1995 -10000 -365

Application of this rule sometimes causes different, but close, Start and End dates
to return the same duration.

Start date End date Duration Actual Days
February 28, 1995 February 29, 1996 10000 366
February 28, 1995 February 28, 1996 10000 (1) 365

(1) This result was adjusted since the Start and End dates represent the same day and
month in contiguous years.

500 Building Applications

Understanding Contexts

Understanding Contexts

A CA 2E context is a grouping of the fields that are available for use at a particular
processing step in an action diagram. A context specifies which instance of a particular
field is to be used. Fields can be referenced for use as parameters in functions and in
conditions to control functions.

Different contexts are available at different points of the action diagram depending on
the function type, the stage of processing, and the particular nature of the user point;
that is, whether a subfile control format or a record detail format is being processed.
Each type of context is identified by a three-letter CA 2E code. For example, PAR for

parameter fields, CON for constant fields, and WRK for work fields. The following pages
describe the context types and their usage.

Database Contexts
DB1

The Database One (DB1) context contains the fields that are in the first, or only, format
of the access path to which a function is attached.

Any field in the access path format is available for processing in the DB1 context.
The DB1 context is available to all function types that perform update or read functions
on a database file after reading and before writing to the database file. Those functions

are CRTOBJ, CHGOBJ, DLTOBJ, and RTVOBI.

In the generated source code, the generated names of fields from the DB1 context are
prefixed by the format prefix of the appropriate DBF file.

For example, if the following relations are present in an access path for the Company
file:

FIL Company REF Known by FLD Company code CDE
FIL Company REF Has FLD Company name TXT

Company name is present in the DB1 context of functions using that access path and can
be used in action diagrams (where access to the database is allowed), for example:

WRK. Company name = DB1. Company name <<<

Chapter 10: Modifying Action Diagrams 501

Understanding Contexts

DB2

The Database Two (DB2) context contains the fields that are in the second format of the
access path to which a function is attached.

Any field in the second access path format is available for processing in the DB2 context.

The DB2 context is available only to functions that are attached to a Span (SPN) access
path; the DB2 context applies to the detail file (or second format) in the SPN access
path. The DB2 context is available only within an EDTTRN function to access the
secondary format.

In the generated source code, the generated names of fields from the DB2 context are
prefixed by the format of the appropriate DBF file.

Consider the following example. A Span (SPN) access path is created for Order and
Order Detail and the second (detail) format for Order Detail contains the following
relations:

FIL Order detail CPT Owned by FIL Order QTY
FIL Order detail CPT Refers to FIL Product REF
FIL Order detail CPT Has FLD Order quantity QTY

Order Quantity is present in the DB2 context of functions using that access path. It may
be used in the action diagram where access to the database is allowed, for example:

WRK. Order quantity = DB2. Order quantity <<<

502 Building Applications

Understanding Contexts

ELM

The ELM context contains the fields defined for the last-accessed element of a specified
array. This context is valid only in the *CVTVAR built-in function and may be specified
for either the input or output parameter.

Since a single element of an array is equivalent to a data structure, you can use the ELM
context

m To decompose a field into a structure. A move of an element of an array to a field
constitutes a move of the array’s structure to the field.

m To group a set of fields into a single field.
Note: You must define a key for an array even if the array holds a single element.

Following is more information on these two usages.

Move from a Field to a Structure
m The array is the output of the *CVTVAR function.

m To ensure that the array index is not corrupted by the move, the array must be
defined as a single-element array.

m The *CVTVAR function is implemented as a MOVEL operation from the field to the
data structure (array). Blanks are moved to the array element before the data is
moved.

Here is an example of how this operation might look in an action diagram.

EDIT ACTION DIAGEAM Edit SYMDL Vendor
FIND== Edit Vendor
I = I = 1
I(A,E,Q, %, +,-,=,=R) : EDIT BRCTION - FUNCTION NAME
FF : EDIT ACTION - FUNCTION DETAILS ALL PARAMETERS
: Function file -
: Function. . . : *CVTVAR
: obkj
: IOB Parameter Uze Typ Ctx Object Name
O *Result ARR ELM Arrray
I *Factor 2 FLD DE1 Address ZIP
F3=Exit F5=Reload F9=Edit parms
F10=Default parms F12=Previous F15=Undefined parms only
F3=Prev block F5=User points Fe=Cancel pending moves F23=More opticons
F7=Find Fe=Boockmark Fo=Parameters Fz4=More keys

Chapter 10: Modifying Action Diagrams 503

Understanding Contexts

Move from a Structure to a Field

The array is the input of the *CVTVAR function.

The *CVTVAR function moves the last accessed array element of the named array to
the named field. In this case, the array may contain multiple elements.

The *CVTVAR function is implemented as a MOVEL operation from the associated
data structure (array) to the field.

Here is an example of how this operation might look in an action diagram.

EDIT ACTION DIAGRAM

Edit SYMDL Customer Address
FIND=> Change Customer Address
B R o= T e S
I(R,E,Q,%, +,-,=,=R) EDIT ACTION - FUNCTION NAME
FF EDIT ACTION - FUNCTICN DETATLS ALL PARAMETERS
: Function file
Functiocn. *CVTVAR
o)y
IOB Parameter Use Typ Ctx Object Name
O *Result FLD CEl Address ZIP
I +*Factor 2 FLD ELM Array
F3=Exit F5=Reload F9=Edit parms

F10=Default parms F12=Previous F15=Undefined parms only

F3=Prev block F5=User points Fe=Cancel pending moves

F23i=More options
F7=Find Fe=Bookmark Fo9=Parameters

F24=More keys

For more information:

On the *CVTVAR built-in function, see section, Understanding Built-In Functions.

On decomposing and recomposing character data, see this chapter, Understanding
Built-In Functions topic, *CONCAT and *SUBSTRING functions.

On arrays, see the section Using Arrays as Parameters (see page 284), and see the
chapter "Defining Arrays" in the Building Access Paths Guide.

504 Building Applications

Understanding Contexts

Device Contexts

KEY

The Key (KEY) context contains the fields that are on the key panel display of the device
functions that have key panels. These keys apply to the record functions: Edit Record
(EDTRCD 1,2,3) and Display Record (DSPRCD 1,2,3).

All the key fields on the access path to which the function is attached are available in
this context, along with any associated virtual fields. If you map parameters to the
device panel (as mapped or restrictor parameters), they are also available in this
context.

The shipped field *CMD key is present in this context only in the exit program user
point. It is also present in the detail format. You cannot add function fields to a key
panel.

Consider the following example. An Edit Record function is defined for an Employee file,
using an access path that has keys defined as follows:

FIL Company REF Known by FIL Company code CDE
FIL Company REF Has FLD Company name TXT
FIL Employee REF Owned by FIL Company REF
FIL Employee REF Known by FLD Employee code CDE
FIL Employee REF Has FLD Employee name TXT

Company name is a virtual field on the Employee file through the Owned by relation.
The fields available in the KEY context of the action diagram for the function are:

*CMD key
Company code
Company name

Employee code

Chapter 10: Modifying Action Diagrams 505

Understanding Contexts

DTL

2ND

The Detail (DTL) context contains fields on the display panels of device functions that
have single, non-subfile detail panels such as EDTRCD, or multiple, non-subfile panels
such as EDTRCD2.

All of the fields from the access path to which the function is attached are available in
the DTL context. If you map parameters to the device panel as mapped or restrictor
parameters, they are also available in this context.

The shipped field, *CMD key, is present in this context. If you add any function fields to
the detail panel display, these fields are available in the DTL context.

The DTL context is available in the action diagrams of PMTRCD, EDTRCD, and DSPRCD.
This context is only available after the key has been successfully validated.

Consider the following example. An Edit Record function is defined on a Stock Item file
using an access path, which includes the following relations:

FIL Stock item REF Known by FLD Stock item code CDE
FIL Stock item REF Has FLD Stock item gty QTY
FIL Stock item REF Has FLD Item price PRC

Stock Item, Qty field and Item Price Field are present in the DTL context for that function
and could be used in the action diagram; for instance:

WRK. Stock value = DTL. Stock item * DTL. Item price <<<

The Second Detail panel (2ND) context contains the fields that are on the second detail
panel display of a device function that has a multi-part panel design attached to it, such
as EDTRCD2 and DSPRCD2.

All of the fields from the access path to which the function is attached are available in
the 2ND context. If you map parameters to the device panel as mapped or restrictor
parameters, they also are available in this context.

The 2ND context is only available in the action diagrams of the following function types:
m Edit Record 2 panels

m Edit Record 3 panels

m Display Record 2 panels

m Display Record 3 panels

506 Building Applications

Understanding Contexts

3RD

The Third Detail panel (3RD) context contains the fields that are on the third detail panel
display of a device function that has a multi-part panel design attached to it, such as
EDTRCD3 and DSPRCD3.

All of the fields from the access path to which the function is attached are available in
the 3RD context. If you map parameters to the device panel as mapped or restrictor
parameters, they also are available in this context.

The 3RD context is only available in the action diagrams of the following function types:

m Edit Record 3 panels

m Display Record 3 panels

Chapter 10: Modifying Action Diagrams 507

Understanding Contexts

CTL

The Subfile Control (CTL) context contains the fields that are in the subfile control record
of the device functions that have a subfile panel display such as Display File or Edit
Transaction.

The fields available in the CTL context depend on the function type, the access path
used by the function, and whether you have specified restrictor parameters for the
function. The *CMD key shipped field and any parameters specified as mapped or
restrictor parameters are present on the CTL context.

If the function is attached to a SPN access path, the CTL context contains all of the fields
from the header format on the access path.

If the access path is a RTV or a RSQ and the function is:

m Display type (Display File or Select Record), all of the fields on the access path are
available in the CTL context unless any of those fields have been dropped from the
panel subfile control format. The key fields can be used as positioner parameters,
the non-key fields can be used as selectors.

m Edit type (Edit File), all of the key fields on the access path are available in the CTL
context unless any of those fields have been dropped from the panel subfile control
format. These fields can be used as positioner parameters. For key fields, which are
restrictor parameters for the function, any associated virtual fields are also present
on the CTL context.

If you defined any key fields as restrictor parameters, any virtual fields are also available
in the CTL context.

The CTL context is available in the action diagrams of all functions that have a subfile
panel display:

m Display File (DSPFIL)

m Display Transaction (DSPTRN)

m Edit File (EDTFIL)

m Edit Transactions (EDTTRN)

m Select Record (SELRCD)

The CA 2E shipped field *CMD key provides the means of specifying that a specific piece
of logic is to be executed whenever the user presses a particular function key. The

*CMD key is a status (STS) field and already has defined conditions for many possible
function or control key combinations.

For more information on a list of the default function keys, see this module, in the
chapter, "Modifying Device Designs."

Consider the following example of the use of the *CMD key.

508 Building Applications

Understanding Contexts

To specify the use of a function key to call another program, you should insert the
relevant processing at the appropriate point in the action diagram, for example:

> USER: Process command keys

.-CASE <<<
|-CTL. *CMD key is CF06 <<
| Print detailed report <<<
‘ -ENDCASE

Consider the following example of the indirect use of a *CMD key.

If you want to be able to remap the function keys of your application to another
standard, you should use LST conditions in place of direct function key conditions. For
example, you could:

1. Define a LST condition called Display Print.
2. Condition your action diagram using this condition.

Assign a function key such as F6 to the Display Print condition.

> USER: Process command keys

.-CASE <<<
|-CTL. *CMD key is Display print <<<
| Print detailed report <<<
‘ -ENDCASE

Chapter 10: Modifying Action Diagrams 509

Understanding Contexts

RCD

The Subfile Record (RCD) context contains the fields that are in the subfile record of
device functions that have a subfile panel display such as Display File or Edit
Transaction.

The fields available in the RCD context depend on the function type and the access path
used by the function. The *SFLSEL shipped field is present on the RCD context unless
you specifically remove it from the function options. Mapped parameters specified as
mapped or restrictor parameters are present on the RCD context.

If you have a SPN access path, the RCD context contains all of the fields from the detail
format on the based-on access path.

If you have a RTV or RSQ access path, all of the fields from the based-on access path are
available in the RCD context.

The RCD context is available in the action diagrams of all functions that have a subfile
panel display:

m Display File (DSPFIL)

m Display Transaction (DSPTRN)
= Edit File (EDTFIL)

m Edit Transaction (EDTTRN)

m Select Record (SELRCD)

The shipped *SFLSEL (subfile selector) field provides a selection column field for subfiles.
You can optionally remove this field from the panel design using the Edit Function
Options panel. The *SFLSEL field is a status (STS) field and is shipped with some
predefined conditions.

For more information on a list of SFLSEL conditions, see this module, in the chapter,
"Modifying Device Designs."

These conditions can be displayed and changed by pressing F9 at the Edit Field panel of
the *SFLSEL field. If you always see the *SFLSEL conditions using list conditions, you are
able to reuse a single selection code for multiple purposes.

510 Building Applications

Understanding Contexts

CUR

The Current Report Format (CUR) context contains all of the fields that are in a report
format of a Print File or Print Object function.

The report functions have header and total formats for each key level in the based-on
access path, except for the lowest level key, as well as a final total format. For example,
an access path with three key fields, would have three total formats:

Headings for level 1 (1HD)
Headings for level 2 (2HD)
Detail record, level 3 (RCD)
Totals for level 2 (3TL)
Totals for level 1 (4TL)
Final totals (ZTL)

The detail record format contains all of the fields from the based-on access path while
the heading and total formats for each level contain the key field for that level and any
associated virtual fields. These fields are available in the action diagram where the
processing for a particular format occurs in the CUR context. In addition, any function
fields that you have added to the report format are available in the CUR context.

The CUR context differs from the NXT context in that the NXT context contains fields
that are present in the report format representing the next level break in the report.
The CUR context specifies fields that are being processed at a given point in the action
diagram while the NXT context specifies fields being processed in the following format.

The CUR context is only available in the action diagrams of the following function types:
m Print File (PRTFIL)
m Print Object (PRTOB))

For example, in a report to print out an Order, if Order Qty and Product Price are fields
present on the access path to which the Print File function is attached and Order Line
Val is a function field attached to the Detail Record (RCD) format, the following
processing might be inserted in the action diagram at the point where detail records are
processed:

> USER: Process detail record

: CUR.Order line val = CUR.Order gty * CUR. Product price

Chapter 10: Modifying Action Diagrams 511

Understanding Contexts

NXT

The Next Report Format (NXT) context defines a context relative to the CUR context for
report functions. The NXT context contains fields that are in the next active report
format (not dropped format) that is one level break lower. You could use the NXT
context to specify the placement of the result of a function field (SUM, MIN, MAX, or
CNT) on the appropriate report total format. You can only use the NXT context for result

fields.

The NXT context is only available in the action diagrams of the following function types:
® Print File (PRTFIL)

®m Print Object (PRTOBJ)

For example, in a report to print out an Order: if the Order detail format contains the

field, Order Line Value, and Total Order Value is a SUM function field based on this field,
the same function field can be attached to two different formats:

m The Order detail format to sum into the Order totals format (for the Order no. key
level).

m The Order total format to sum into the Final totals format.

In both cases, the instance of the input field is from the CUR context while the result
field is placed on the NXT context.

Page Headings (HDR, TOP, 1PG)
Order headings (1HD)

(1)
Order detail (RCD) — CUR -
- CUR = Order totals (1TL) = NXT = !
(2)
v NXT Final totals (ZTL)
End of report (FTR)

512 Building Applications

Understanding Contexts

The function field is inserted into the action diagram of the report function at the points
where each format is processed.

> USER: Process Order detail
- <<
: Total order value
0 Total order value NXT Total order value
I Order line value CUR Order line value
> USER: Process Order no. totals
-- <<

: Total order value

0 Total order value NXT Total order value
I Order line value CUR Order line value

The parameters for each call to the function field can be accessed using the Edit Action -
Function Details window. For example, Order Line Value is input from the CUR context
and Total Order Value is output to the NXT context:

EDIT ACTION - FUNCTION DETAILS

Obj

Function file . . *FIELD

Function *Total order value
IOB Parameter Use Typ
O Total order value FLD
I Order line value FLD
F3=Exit F5=Reload

F10=Default parms F12=Previous

ALL PARAMETERS

Ctx Object Name
NXT Total order value
CUR Order line value

F9=Edit parms
F15=Undefined parms only

Chapter 10: Modifying Action Diagrams 513

Understanding Contexts

If a report format is dropped from a CA 2E report design (using the Edit Design Formats
panel), the NXT context retains its meaning. Any fields in the context are automatically
assumed by CA 2E to be on the next highest format level. Thus, in the previous example:
if the Order Totals format was dropped, the Order Line Value function field would be
assumed to total directly onto the Final totals format.

514 Building Applications

Understanding Contexts

Literal Contexts

CND

The CA 2E Condition (CND) context enables you to specify that a particular field
condition value is to be supplied as a field value in one of the following ways:

®m Asaparameter to a function.

m Asthe condition that controls a conditional or iterative construct in the action
diagram.

All field conditions that are attached to a field are available in the CND context for that
particular field.

The CND context is available in the action diagrams of all function types. You can use the
CND context for function parameter and action diagram condition fields. However, you
cannot use the CND context for result fields; that is, you cannot move another field
value into a condition context field.

To use a CND context field as a parameter, you specify that the conditions attached to
the field be passed as a parameter value to a result field.

To use a CND context field as a condition, you specify processing in a CASE construct if a
particular field condition is attached to a field. For example, if CND *Return code is
*User QUIT requested, then *Exit program.

The following example shows both uses of the CND context.

As a parameter:

The CA 2E supplied status field *Return code has several conditions attached to it; for

example, *User QUIT requested. Any one of the conditions can be used as a parameter
on the Edit Action - Function Details window:

EDIT ACTION - FUNCTION DETAILS ALL PARAMETERS
Function file . . :
Function. ... : *MOVE
Obj

IOB Parameter Use Typ Ctx Object Name

O *Result FLD PGM Return Code

I *Factor 2 FLD CND *User QUIT requested
F3=Exit F5=Reload F9=Edit parms

F10=Default parms F12=Previous F15=Undefined parms only

Chapter 10: Modifying Action Diagrams 515

Understanding Contexts

This is shown in the action diagram as:

PGM. *Return code = CND. *User QUIT request <<<

As a condition:

If *User QUIT requested is the name of a condition attached to the *Return code field,
then an example of conditioning a CASE statement might be:

.—CASE <<<
: PGM.*Return code is *User QUIT requested <<<
: Exit program <<<
‘—ENDCASE

516 Building Applications

Understanding Contexts

CON

The Constant (CON) context contains any constant or literal values that you want to
specify.

You only use CON context values to specify input values to fields. There are also some
restrictions associated with the usage of this context:

®m You cannot use the CON context with status (STS) fields. You should use the CND
context with STS fields.

m Numeric constants must be less than or equal to ten characters in length, including
the decimal point and sign. A maximum of five characters is allowed after the
decimal point.

m Alphanumeric constants must be less than or equal to twenty characters in length.
The CON context is available in the action diagrams of all function types.

To specify that a numeric field Order Quantity is to be set to a value of 15:

EDIT ACTION - FUNCTION DETAILS ALL PARAMETERS
Function file . .
Function : *MOVE
Obj
IOB Parameter Use Typ Ctx Object Name
O *Result field FLD DB1 Order quantity
| *Factor 2 FLD CND 15.00
F3=Exit F5=Reload F9=Edit parms
F10=Default parms F12=Previous F15=Undefined parms only
This is shown in the action diagram as:
DB1.0rder quantity = CON.15.00 <<<

Chapter 10: Modifying Action Diagrams 517

Understanding Contexts

System Contexts

JOB

The Job (JOB) context contains system fields that supply execution time information
about the job that executes the HLL program implementing a function. You cannot add
additional fields to the JOB context. You would use this context primarily to define
system data to a particular field, such as job date, user name, or job execution start

time.

You can only use JOB context fields for input to other functions. They cannot be

changed.

The fields that appear in the JOB context are provided in a shipped file called *Job Data.

Field Attr Role

*USER VNM System name of job user

*)OB VNM System name of job

*PROGRAM VNM System name of HLL program

*Job number NBR Job number

*)Job submitted/start date DTE Date job submitted

*Job exec start date DTE Date job started executing

*Job exec start time TIME Time job started executing

*Job date DTE Time and date job started executing
*Job year NBR Current year of job date

*Job month NBR Current month of job date

*)Job day NBR Current day of job date

*Job time TME Current time of job date

*Job hour NBR Current hour of job date

*Job minute NBR Current minute of job date

*Job second NBR Current second of job date

*Function main file name VNM System name of function’s main file (1)
*Function main file lib VNM System name of lib. containing file (1)
*Function main file mbr VNM System name of file member (1)
*Function main lib/file CDE Function’s main library and library file (1)
*Current RDB For DRDA

*Local RDB For DRDA

518 Building Applications

Understanding Contexts

Field Attr Role

(1) Not valid for SQL

The JOB context is available in the action diagrams of all function types.
PGM

The Program context (PGM) contains system fields that control the execution of a
function. An example of a PGM field would be *Program Mode which determines the
program mode in which a program executes.

The fields that appear in the PGM context are defined in a system file called *Program
Data.

The PGM fields are:

Fields Attr condition DSP Value
*Program mode STS *ADD ADD
*AUTO AUTO
*CHANGE CHANGE
*DISPLAY DISPLAY
*ENTER ENTER
*SELECT SELECT
*Return code STS *NORMAL *BLANK
*User QUIT Y2U9999
requested
*Record data STS *NO N
changed *YES Y
*Record selected STS *NO N
*YES Y
*Reload subfile STS *NO N
*YES Y
*Scan limit NBR - -
*Defer confirm STS *Defer confirm Y
*Proceed to confirm N
*Print format STS *Do not print format N
*Print format Y

Chapter 10: Modifying Action Diagrams 519

Understanding Contexts

Fields Attr condition DSP Value
*Continue STS *NO N
transaction *YES Y
*Next RDB VNM - -
*cursor filed VNM - -
*cursor row NBR - -
*cursor column NBR - -
*Re-read Subfile STS *NO N
Record *YES \%
*Initial call STS *NO N
*YES Y

*Sbmjob override TXT -
string

*Sbmjob job name VNM - -

*Sbmjob job user VNM - -

*Sbmjob job CDE - -
number

*Synon work field NBR - -
(15,0)

*Synon work field NBR - -
(15,2)

*Synon work field NBR - -
(15,5)

*Synon work field NBR - -
(17,5)

*Synon work field NBR - -
(17,7)

*Synon work field NBR - -
(17,9)

The Display value can be translated to other national languages if appropriate.
You can use the fields in the PGM context to control processing within function.

Each field is discussed briefly following:

520 Building Applications

Understanding Contexts

*Program Mode

The *Program Mode field specifies the current mode of a program. This field can be
used to provide an override to the default initial mode of CA 2E functions and to
condition processing according to the current mode.

For example, when you first enter an Edit File or Edit Record function, the program is in
*CHANGE Mode unless there are no records in the file to be edited. In this case the
program is in *ADD Mode. If you want the end user to be in *ADD Mode regardless of
the presence of records in the file, you can override the default in the User Initialization
part of the action diagram for the Edit function using the built-in *MOVE function such
as:

PGM. *Program mode = CND.*ADD <<<

Chapter 10: Modifying Action Diagrams 521

Understanding Contexts

*Return Code

The *Return Code field contains a return code that is passed between all standard
functions. This field may be used to communicate with the calling and called functions.

You can add extra conditions to the *Return Code field. A special facility is provided on
the Edit Field Conditions panel for this field, which allows you to define conditions by
selecting from existing message functions. The conditions created have the same name
as the selected message function (for example, user quit requested) and have the
message identifier used to implement the message (USR0156) as a condition value.

If you want to specify a fast exit (for example, pressing F15 when using a function that is
called by another function exits you from both functions), the *Return Code field would
be used in the PGM context as follows:

1. Inthe called program you would use the *Exit Program built-in function to specify
an exit from the program when F15 is pressed. The parameter for this function is
the *Return code field which you would specify as the condition *User QUIT

requested:

.—CASE <<<
|-CTL.*CMD key is CF15 <<<
| Add new records function <<
| *Exit program — return code CND. *User QUIT requested <<<
‘—ENDCASE

1. Inthe calling program you would specify, immediately after the call to the
subsidiary function, that if the return code returned corresponds to the condition
*User QUIT requested, quit the (calling) program:

Execute subsidiary function

.—CASE <<<
|-PGM. *Return code is *User QUIT requested <<<
| *Exit program — return code CND. *User QUIT requested <<<
‘—ENDCASE

522 Building Applications

Understanding Contexts

*Reload Subfile

The *Reload Subfile field specifies that a subfile is to be reloaded before redisplay. CA 2E
standard functions normally only reload subfiles if it is required by the default
processing. You can use this field if you want to force a subfile reload.

For example, if a Display File function calls a subsidiary function that adds records to the
database, you may want the subfile to be reloaded on return so that the new records
are included in the display. To force a subfile reload, you should move the condition
*YES to the *Reload subfile field immediately after the call to the subsidiary function;
this causes the subfile to be reloaded on return to the Display File function.

.—CASE <<<
|-CTL.*CMD key is CF09 <<<
| Add new records function <<<
| *PGM. *Reload Subfile = CND. *Yes <<<
‘—ENDCASE

Chapter 10: Modifying Action Diagrams 523

Understanding Contexts

*Record Data Changed

The *Record Data Changed PGM context field specifies whether the data for the current
record has changed. The value *Yes means the record data has changed; the value *No
means that the record data has not changed; it is initialized to * * (blank). The database
record is updated only when the value of this field is *Yes.

Note: Checking for unchanged record data is done only if the Null Update Suppression
function optionis Y or A.

You can access the *Record Data Changed field from all functions that contain an
embedded CHGOBIJ function, such as EDTFIL and EDTTRN. It is valid only in the Data
Read and Data Update user points in the action diagram of CHGOBJ functions; other
uses give invalid results. Two ways to use this field are:

®m You can test its value to conditionally perform actions that depend on whether data
has been changed as shown in the example following.

® You can manually set this field to conditionally force or suppress a database record

update.

The following example illustrates a common technique for setting an audit stamp. The
field, Timestamp, is set to the current date and time only if other fields within the
record have been changed. In other words, if the value of the *Record Data Changed
field is *Yes, then the audit stamp is written to the file.

The Timestamp field has the following characteristics:

m |tis of type TS#.

m |tis onthe update access path for the CHGOBJ function.

m |tis a Neither parameter on the CHGOBIJ function, which means it is not passed into
the routine and must be set by the action diagram code within CHGOBJ.

> USER: Processing before Data update

.— <<
:.> Only set the Timestamp field if other data has changed <<<
1 .—CASE <<<
:|-PGM.*Record Data Changed is *Yes <<<
1| DBl.Timestamp=JOB.*Job date <<<
:| DBl.Timestamp=JOB.*Job time <<<
: '—ENDCASE <<<

For more information on the CHGOBJ function, see this module, in the chapter "Defining
Functions," CHGOBJ—Database Function topic.

524 Building Applications

Understanding Contexts

*Record Selected

*Scan Limit

The *Record Selected field specifies that a record read from the database is to be
processed. In CA 2E standard functions that read multiple records from the database,
for instance to load a subfile, you can add user-defined processing to specify which
records are to be included. The record selected field allows you to indicate whether a
record is to be included or omitted.

For example, if you want to add your own selection criteria to the loading of the subfile
in a Display File or Edit File function, you should insert it into the USER: Initialize Subfile
Record from DBF Record part of the Load Next Subfile Page routine in the action
diagram for the function. For instance, if you want to specify that records with a zero
date field are to be omitted:

> Load next subfile page

REPEAT WHILE
-Subfile page not full
PGM. *Record selected = CND. *YES
Move DBF record fields to subfile record
> User: Initialize a subfile record from DBF record

1 .-CASE

| -DBl.Date of birth is *ZERO
: | PGM. *Record Selected = CND. *NO
: . -ENDCASE

.-CASE
| PGM. *Record Selected is YES
| Write subfile record
‘ -ENDCASE
Read next DBF record
ENDWHILE

The *Scan Limit field specifies a limit to the number of records that are to be read at a
time. If additional selection is applied when reading records from the database (for
instance, on the previous *Record selected field), then a limit can be specified on the
number of records that can be unsuccessfully read.

The default value for the Scan Limit is 500. For example, to specify that the Scan Limit is
to be 100, use the built-in function *MOVE to set the *Scan Limit field to this value in
the USER: Initialization exit point of an action diagram:

PGM. *Scan limit = CON. 100 <<<

Chapter 10: Modifying Action Diagrams 525

Understanding Contexts

*Defer Confirm

*Print Format

The *Defer Confirm field only applies to functions where a confirm prompt is available.
In such functions there are likely to be occasions when you want to suppress the
confirm prompt and subsequent processing. On these occasions, *Defer Confirm causes
the panel to be redisplayed as if the user had replied No to the confirm prompt. The
effect is the same, even if the confirm prompt option is not specified on the Edit
Function Options panel.

For example, in an Edit File function, if a line is selected with a Z, you would probably
not want to display the confirm prompt on returning to the Edit file display. To prevent
the program from displaying the confirm prompt, move the condition *Defer Confirm to
the *Defer Confirm field. This causes the confirm and update part of the processing to
be skipped.

.—CASE <<<
|-RCD. *SFLSEL is *Zoom <<<
| Display details function <<<
| *PGM. *Defer confirm = CND. *Defer confirm <<<
‘—ENDCASE <<<

The Print Format field specifies whether a format from a report is to be printed. The
*Print Format option only applies to Print File and Print Object functions. There may be
instances when you want to select more records from the database file for processing
by the function (controlled with the *Record Selected field) than you want to be
printed.

For example, if you want a Print File function to print either a detailed or a summary
report, depending on the value of an input parameter to the function, you can control
which formats are printed in the two reports by means of the *Print Format field.

> USER: On print of detail format <<<
- <<<
. .—CASE <<
: | -PAR.Report type is Summary <<
: | -*PGM.*Print format = CND.*Do not print format <<<
: ‘—ENDCASE <<<
‘- <<<

526 Building Applications

Understanding Contexts

*Continue Transaction

The *Continue Transaction field is applicable for transaction functions such as EDTTRN
and DSPTRN that have input restricted key fields. This field can be used to perform the
equivalent of reload subfile for these two functions without returning to the key panel.
This can be done within the action diagram of the function by inserting the following
code in the *EXIT PROGRAM user point:

This piece of action diagram logic enables the subfile of an EDTTRN or DSPTRN to be
reloaded and the subfile redisplayed without having to return to the key panel.

> USER: Exit program processing <<<
Fad <<
: .—CASE <<<
: |-CTL.*CMD key is *Exit <<<
: | -OTHERWISE <<<
: | PGM.*Continue transaction = CND.*No <<<
: | <--QUIT <<<

‘—ENDCASE <<<

*Next RDB

The *Next RDB field is applicable for functions with distributed functionality. If the value
of *Next RDB is not blank, the value is used to establish a connection prior to
performing database access.

For more information on using DRDA, see Generating and Implementing in the chapter
"Distributed Relational Database Architecture."

*Cursor Field

The *Cursor Field always contains the name (DDS name, for example Z1ABCD) of the
field where the cursor is currently positioned.

IS Comparison Operator You can use the IS comparison operator to
determine whether the cursor is
positioned on a specific field on the panel
by comparing the PGM

Cursor Field to the field. You can use the IS
comparison operator in any condition
statement.

Chapter 10: Modifying Action Diagrams 527

Understanding Contexts

The following is an example of the IS comparison operator. This example shows A test
that determines if the cursor is positioned on the Customer Status field.

EDIT ACTION DIAGRAM Edit SYMDL Customer

FIND=> Edit Customer

I(C, 1.8 F=Insert const i i it i i e e

I(AE,Q,%,+,-,=,=A)F=I : EDIT ACTION - CONDITION :
> USER: Validate :

L= : Title. : PGM.%Cursor field <IS> RCD.Customer stat

. .-CAsE : us
FF_ . 1-P6N.xCursor f : Context.Field . . . : [UGM *Cursor field
__ . i Send informat : Condition . Lo
__ . "-ENDCASE : OR
- : Comparison. ... IS
; Context.Field . . . : RCD Customer status
F3=Exit F7=Edit Compound Condition
F3=Prev block F5=User points F6=Cancel pending moves F23=More options
F?=Find F8=Bookmark F9=Parameters F24=More keys

Use the PGM *Cursor Field to test for cursor position on subfile fields with the RCD
context. In this case, both the field and the subfile record must match the cursor
position for the test to be true. This is implemented automatically by CA 2E.

When testing for cursor position on subfile records, the logical place to insert the CASE
statement in the action diagram would be

USER: Process subfile record (or equivalent user point.)
Some additional logic is required to test for a cursor position in the DSPFIL, EDTFIL, and
SELRCD function types. This is discussed under the example for PGM *Re-read subfile

record field.

PGM *Cursor Field is available for reference only. For example, you are not able to move
conditions or values into this field.

*Cursor Row and *Cursor Column

The *Cursor Row and *Cursor Column field always contains the relative numeric row
and column that the cursor is currently on. As with *Cursor Field, these fields are
available as reference fields only.

528 Building Applications

Understanding Contexts

*Re-Read Subfile Record

The *Re-read Subfile Record field can be used to force the reprocessing of subfile
records whether or not they have been changed. This is particularly useful when testing
for cursor position on a subfile within the DSPFIL, EDTFIL, and SELRCD function types.

Chapter 10: Modifying Action Diagrams 529

Understanding Contexts

Differences in Subfile Processing Between EDTTRN and DSPTRNs Compared to
DSPFIL, EDTFIL, and SELRCDs

The EDTTRN and DSPTRN functions load all records in a subfile before the panel
appears. They also re-process all records in the subfile when the user requests
validation of the data.

In the example described under PGM *Cursor field, this means that the CASE statement
is tested for every subfile record and is able to determine the exact subfile record and
field on which the cursor is currently positioned.

The DSPFIL, EDTFIL, and SELRCD functions load records one page at a time.

They only re-process records that have been modified or touched by the end user. This
processing enables these functions to perform efficiently and ensures that records that
have not been modified are not processed. This means that the USER: Process Subfile
Record (or equivalent user point) is examined for EDTTRN and DSPTRN functions for
every record in the subfile.

Since DSPFIL, EDTFIL, and SELRCD functions only process changed records, the CASE
statement is only tested for those records that have been flagged as modified.

In order for the cursor position to be detected on subfile records in these function
types, you must change the subfile record or you must flag the subfile record to be
re-read in any event.

To achieve the latter, another field PGM *Re-read subfile record can be used.

To ensure that subfile records are re-processed, the PGM *Re-read Subfile Record field
should be set to *Yes as follows:

PGM.*Re-read Subfile Record = CND.*YES

<--QUIT
If the DSPFIL had no post-confirm pass, the following additional action diagram logic
would be required at the end of User: Process Subfile Record (pre-confirm) user point.
This would ensure that the subfile records are re-processed again if the subfile was

re-loaded after the processing pass of the records.

You can condition the setting of *Reread Subfile record based on a set of conditions.
This could be used to pre-select records that meet certain status criteria.

For example:

> USER: Process subfile record (Pre-confirm)

530 Building Applications

Understanding Contexts

:.—CASE

:|-RCD.Order value is GT CTL.Customer Max Order Value

| PGM.*Re-read subfile record = CND.*No

1| Send information message — Order & 1 will not be accepted
: | -*OTHERWISE

1| WRK.Highlight field = CND.*YES Order Value

: '—ENDCASE

*Synon Work field (15,0) to (17,9)

*Initial Call

These fields are available as numeric fields and have the lengths as specified in their
description. These fields can be used as computational work fields.

*Synon Work field (17,7) is the default value intermediate result field that is used when
a compute expression is initially created.

For more information, see "Editing Compute Expressions."

The *Initial Call field allows you to detect whether the function is being invoked for the
first or subsequent times.

This field is only of use if the function option Closedown Program has been set to *No in
which case the value of PGM *Initial Call is *Yes. For subsequent calls to this function
the value is *No.

COBOL programs also use this field. Nested COBOL programs remain under the control
of the calling program. The *Initial Call field is set to *YES the first time a nested COBOL
program is called. Subsequent calls set the field to *NO.

In order to execute logic that is only performed once when a function is first invoked,
the following action diagram logic can be inserted:

>USER: Initialize program

.—CASE

| -PGM. *Initial Call is *Yes

| Load Product Info array — Product
‘—ENDCASE

The field PGM *Initial Call is available for reference only and is set to *No by the
function automatically.

For more information and examples on how to use the PGM *Initial Call field, see
Building Access Paths in the chapter "Defining Arrays."

Chapter 10: Modifying Action Diagrams 531

Understanding Contexts

*Sbmjob override string

The *Sbmijob field provides dynamic overrides of SBMJOB parameters when a job is
submitted for batch processing from within an action diagram. Only EXCEXTFUN,
EXCUSRPGM, and PRTFIL functions can be submitted for batch processing from an
action diagram.

Note: This feature does not support function calls that contain multiple-instance array
parameters.

For more information on submitting jobs from within an action diagram, see Submitting
Jobs Within an Action Diagram (see page 568).

*Sbmjob job name, *Sbmjob job user, *Sbmjob job number

Function Contexts

PAR

These PGM context fields facilitate additional processing for jobs submitted from an
action diagram; for example, handling spool files, follow-on updates, lock manipulation,
and any other processing that requires submitted job information.

The Parameter (PAR) context contains the fields that you define as parameters for the

current function. This includes the function whose action diagram you are currently
editing.

You can specify function parameters using the Edit Function Parameters panel. When
you define a field as a function parameter, CA 2E automatically adds the field to the PAR
context of the function, but availability of the fields associated with the PAR context is
user-point dependent.

532 Building Applications

Understanding Contexts

LCL

If you define parameters for a particular function, then the PAR context is available at all
points in the action diagram of that function.

Consider the following example. If you create a Display file function on a Horse file, you
could specify Horse code as an input parameter and Race date and Race time as output
parameters:

EDIT FUNCTION PARAHETER DETAILS My Hodel
Function name. . : Display Racing resulis Type : Display file
Received by file : Race Entty ficpth: Races for a Horse
Parameter (file) : Race Entrty Passed as: KEY
7?7 Field Usage Role Flag error
B Horse code I RST
_ Race date 0 HAP
Race time 0 HAP

SEL: Usage: I-Input, 0-Output, B-Both, H-Neither, D-Drop.
Role: R-Restrict, H-Map. V-Vary length, P-Position. Error: E-Flag Errtor.
F3=Exit

The Horse code could then be used as an input field and the Race date and Race time as
output fields at appropriate places in an action diagram. For example:

CTL.Horse code = PAR.Horse code <<<

PAR.Race date
PAR.Race time

DTL.Race date <<<
DTL.Race time <<<

The LCL context provides the ability to define variables that are local to a given function.
It is available in all situations where the WRK context is available and all fields defined in
the model are presented for selection.

Although neither parameter provide a method of defining local work variables, this
method requires additional effort and is not as flexible.

Chapter 10: Modifying Action Diagrams 533

Understanding Contexts

The LCL context provides an alternative to the WRK context and avoids two major
pitfalls of the latter. Since the WRK context is global

m A WRK field can inadvertently be changed by an internal function
m [t encourages the dangerous practice of using WRK fields to communicate among

functions without using parameters

Set the Parameter Default Context (YDFTCTX) model value to *LCL to use LCL rather
than WRK as the default context for parameter defaulting in the action diagram editor.

The model-level default context is displayed in the Subfile Control area when an action
has undefined parameters. This field can then be changed prior to pressing F10.
Available default contexts are:

m LCL- All parameters use the LCL context.
m WRK - All parameters use the WRK context.

m NLL - Output parameters use the NLL context.

Both and Input parameters use the LCL context.

Special Considerations

NLL

m Internally, the generators create a new field for each function in which a LCL field is
declared. As a result, although the LCL context defines fields that are local to a
particular function, another function can change the value of the field. For example,
a LCL field passed to another function as a Both parameter can be changed by the
called function.

m Agiven program can have up to 9999 LCL parameters.

m For internal functions that are not implemented as shared subroutines, only one
LCL variable is generated; in other words, all instances of the internal function share
the same local variable. Thus, the LCL context is only logically local to a particular
function.

The NLL context is available in all situations as a target for output parameters. The
generators process this context by allocating a field from a separate sequence of field
names. Such fields are local to a particular function in the same way as LCL context
fields.

If you change an Output parameter that is supplied using the NLL context to Input or
Both, the action diagram editor displays a message when the function parameters are
prompted.

534 Building Applications

Understanding Contexts

Benefits

Generic RTVOBJ

You can safely discard output parameters without worrying about whether they are
overwriting a work or local field used elsewhere.

You can trim your model of unnecessary functions; for example, a suite of RTVOBJ
functions, each of which returns a different output, can be replaced with a single
general purpose RTVOBIJ.

You do not need to define special fields to use as discard targets.

Since the NLL context is output-only, it can be used repeatedly to receive output
from multiple functions.

The NLL context encourages use of a single general purpose RTVOBJ rather than a suite
of RTVOBIJ functions, each of which returns a different output.

EDIT ACTION DIAGRAH EdLt JARMOL Order
FIND=> Edit Order
IIC,I,5)F=Insert construct [(X,00F=Insert alternate case
IA,E,0, %, +,-.=,=A)F=[nsert action [IHF=Insert message

> USER: Yalidate subfile record flelds

S (€43
F . Get Customer Info - Customer = (€44

F3i=Prev plock F3=User points F6=Cancel pending moves F23=Hore opiions
Fi=Fing FE=Bookmark FO=Parameters F24=Hore Leys

Chapter 10: Modifying Action Diagrams 535

Understanding Contexts

WRK

When this function is called from within the action diagram of another function, set the
output parameters you want returned to an appropriate context and set all others to
the NLL context.

EDIT ACTION DIAGRAM Edit JARMDL Order
FIND=> Edit Order
b O I e 8y Y ol N
I(A,E.Q,%,+,-,=,=A) : EDIT ACTION - FUNCTION NAME :
IA : EDIT ACTION - FUNCTION DETAILS ALL PARAMETERS
: Function file : Customet

: Function. . . : Get Customer Info
Obj
I0B Parameter Use Typ Ctx Object MName
0 Customer address MAP FLD MLL Customer address
0 Customer city HAP FLD NLL Customer city
0 Customer postal code MAP FLD NLL Customer postal code
0 Customer phone number MAP FLD NLL Customer phone number
0O Customer status HAP FLD NLL Customer status
0 Customer credit limit MAP FLD LCL Customer credit limit
: F3=Exit F5=Reload F9=Edit parms
: F1B=Default parms F12=Previous F15=Undefined parms only
F3 : H
2

Work (WRK) context fields are useful to contain work variables for interim calculations
or for assigning work data or strings in interim processing.

You can use any field in the data dictionary as a work field. You can add other
user-defined fields to the WRK context by adding them to the data dictionary using the
Define Objects panel.

The WRK context is available at all points in the action diagram of all function types.
WRK context variables are global to the external function and so can be changed at any
point by any function.

External Function A External Function B
_——
«—— INT INT INT

As shown in the previous example of two external functions, if you include internal
functions within an external function an umbrella effect allows the internal and the
external function to share the same work field. Consequently, any changes to that
external function’s work field could cause changes to the internal functions.

536 Building Applications

Understanding Contexts

ARR

This means that any actions or functions within the external function can change any
WRK variable without being passed as a parameter. You should only use WRK variables
when there are no intervening function calls that could change the values.

Note: The LCL context provides a method of defining local work variables.

For example, you could use a work field to keep a count of the number of records
processed:

WRK. Counter = WRK.Counter + CON.1 <<<

ARR is similar to the WRK context but is used only for a multiple-instance array
parameter. This context is only available on a function call statement in the Action
Diagram of functions of type Execute External Function.

By passing a parameter as an array, multiple instances of data can be passed in or out, in
a single call to a function. For example, if a customer record structure is defined in the
Customer array on the *Arrays file, that array can be used to define a parameter for an
Execute External Function (EXCEXTFUN) or Execute User Program (EXCUSRPGM) being
passed as RCD (ARRAY). Anywhere from a few to thousands of customer records can be
passed in that one parameter in one single function call.

Multiple-instance Arrays and the ARR Context

Arrays are a standard component of the 2E model that you might have utilized in the
past. An array is a structure, comprised of multiple fields (array subfields), that has a
specified number of elements. Arrays are defined in the *Arrays file.

Earlier, there were three ways to use an array:

m Through the use of CHGOBJ, CRTOBJ, DLTOBJ, and RTVOBJ functions built over an
array to process data in the array, treating the array as if it were an access path,
where each element of the array equates to a record.

m Asastructure that can be used to pass parameters to a function.

m With the *CVTVAR built-in function, you can compose a single string from an array
structure of multiple fields. You can also decompose a single string into its
constituent fields.

For more information on these functions, see the Building Applications Guide and

the Command Reference Guide.

With the second and third uses, only a single instance of the array structure was
referred to — the array was being used only as a structure definition, in other words.

Chapter 10: Modifying Action Diagrams 537

Understanding Contexts

Enhanced Array Support

Now we increased the ways you can use arrays:

Treat an array as a multiple instance structure. In other words, as a true array with
multiple elements within the Action Diagram. In this case use the new *MOVE
ARRAY function —individual fields in a variety of contexts can be copied into array
subfields in a specified instance of the array and vice-versa.

Pass a multiple-instance array as a parameter to a function. By passing a parameter
in this way, you can pass multiple instances of data in or out as a single parameter,
in a single call to a function.

Important! As a CA 2E developer, you need to understand the architectural distinction
between the two mechanisms to manipulate array data, despite the ability to use a
common structural definition:

Data can exist and be modified in an array by using database functions (Create
Object — CRTOBJ, Delete Object —DLTOBJ, Change Object — CHGOBJ, and Retrieve
Object — RTVOBIJ) based over the *Arrays file. However, this array data cannot be
accessed by the *MOVE ARRAY function.

Conversely, data can exist and be modified in a multiple-instance array parameter
(in the PAR context) and in the ARR context by using the *MOVE ARRAY function.
However, that array data cannot be accessed by database functions (Create Object
— CRTOBJ, Delete Object =DLTOBJ, Change Object — CHGOBJ, and Retrieve Object —
RTVOBIJ) based over the *Arrays file.

To make this new functionality possible, we created a new array-related context, ARR
context. The ARR context is similar to the WRK context, but is used to define a
multiple-instance array. Similar to fields in the WRK context, arrays in the ARR context
are initialized during program initialization.The ARR context is available in the following
circumstances:

For use with the *MOVE ARRAY built-in function (see page 472).

When passing a multiple-instance array to a function that has a multiple-instance
array parameter. For more details, see Enhanced Array Support (see page 538).

Earlier, you could define a parameter to a function to be passed as a FLD, RCD, or KEY.

FLD-Each field specified as a parameter on the parameter details display is passed
as an individual parameter.

KEY-A single parameter, where the length is derived from the keys of the specified
access path or array, is passed. An externally defined data structure is used to
define the parameter.

RCD-A single parameter, where the length is derived from the specified access path
or array format, is passed. The parameter contains all the fields which are
individually specified as parameters using the parameter details display. An
externally defined data structure is used to define the parameter.

538 Building Applications

Understanding Contexts

You can now pass certain parameters as an array.

By passing a parameter as an array, multiple instances of data can be passed in or out, in
a single call to a function. For example, if a customer record structure is defined in the
Customer array on the *Arrays file, that array can be used to define a parameter to an
Execute External Function (EXCEXTFUN) or Execute User Program (EXCUSRPGM) being
passed as RCD (ARRAY), any amount of customer records can be passed in that one
parameter, in one single function call.

The Edit Function Parameters Panel and the Edit Function Parameter Details Panel were
updated to accommodate this enhancement.

Enhanced Array Support Terms
To assist you with understanding this enhancement, we use two new descriptive terms
throughout the CA 2E documentation:
Multiple-instance array parameter

Describes when a parameter is passed as an array (when the "Pass as Array" flag is
set to 'Y'). The parameter contains multiple instances of data, where each instance
contains all the fields which are individually specified as parameters using the
parameter details display.

Single-instance array parameter

Describes when a parameter defined using an array is not passed as an array (when
the Pass as Array flag is not available or is set to blank). The parameter contains all
the fields which are individually specified as parameters using the parameter details
display.

Enhanced Array Support Restrictions

This new functionality has a number of fundamental restrictions:

m Only functions of type Execute External Function (EXCEXTFUN) and Execute User
Program (EXCUSRPGM) allow parameters to be passed as array.

m Parameters can only be passed as array when the parameter structure is defined
using an array based over the *Arrays file.

m Parameters can only be passed as array when they are being passed as RCD or KEY.
m Nofields can be dropped on a parameter being passed as an array.

m Does not allow a multiple-instance array parameter in a function call, in both ARR
and PAR context, except when calling an EXCEXTFUN or EXCUSRPGM which has
multiple-instance array parameter. Additionally, the call must be from the top-level
action diagram of an EXCEXTFUN.

m The Submit job (SBMJOB) feature and Y2CALL command do not support function
calls that contain multiple-instance array parameters.

Chapter 10: Modifying Action Diagrams 539

Understanding Contexts

When working with two functions, function A and function B, for example, you can
model in the action diagram of function A a call to function B, where B has a parameter
interface passed as an array. In this case these additional restrictions apply:

®m Function A must be of type EXCEXTFUN, and function B must be of type EXCEXTFUN
or EXCUSRPGM.

m The parameter context must be PAR or ARR and the array name must exactly match
on the parameter definition of A and B.

m [f a parameter is passed as an array on A it must be passed as an array on B.
m The parameter must be passed as RCD on both A and B, or KEY on both A and B.

m Though the usages of the subfields on a parameter passed as an array can be
mixed, the usages must be compatible, such that the calling function can call the
called function.

m |ngeneral, the 2E tool prevents the use of modeling scenarios that cannot be
successfully generated.

Note: For more details, see the sections for Edit Function Parameters Panel (see
page 543) and Edit Function Parameter Details Panel (see page 544), or see the chapter
"Defining Function Parameters" in the Building Applications guide.

Performance Considerations for Multiple-Instance Array Parameters

When using multiple-instance array parameters (MIAPs), the following
performance-related considerations apply:

General performance considerations when using MIAPs

Even though a MIAP can have many instances, only a single pointer is passed by the
operating system to the program, as is the case with a non-MIAP parameter.
Therefore, in terms purely of the parameter being passed as a normal parameter or
as a MIAP, there is no additional performance hit to using MIAPs.

Performance considerations in programs that use MIAPs

Any Neither parameters that are passed to a function are explicitly initialized in the
ZZINIT subroutine in that function. In the case of a MIAP parameter containing
Neither subfields, this initialization occurs for every field, in every element in the
MIAP.

540 Building Applications

Understanding Contexts

Performance considerations in programs that call other programs that use MIAPs

When one program calls another and passes a structure parameter (RCD or KEY), CA
2E generates code in the calling program to initialize the intermediate structures
used to pass the parameters to the called program, to load those structures from
the variables specified in the Action Diagram and to unload those structures into
the return variables. This code is generated whether the parameter is defined as a
MIAP or as a normal parameter.

When the parameter is defined as a MIAPs

m If all the MIAP subfields are defined with the same usage (I, O, B or N), then the
generator loads the entire array structure into and out of the intermediate
structure using a single MOVE. By contrast, if the MIAP subfields have different
usages, each field must be moved separately. Since the MOVE is repeated for
every element of the MIAP, this can affect your performance. Additionally, the
amount of code generated for a MIAP with varying-usage subfields can be
significantly greater.

m As with fields passed as parameters in non-MIAPs, MIAP subfields with a usage
of Neither are explicitly initialized prior to the call —this occurs even if all the
subfields have a usage of Neither.

m As with fields passed as parameters in non-MIAPs, if any of the MIAP subfields
are ISO-type fields (DT#, TM# or TS#), code is automatically generated to
explicitly initialize them, whether or not they are passed with the same usage
as all other subfields within the MIAP.

To ensure the best possible performance when using MIAPs, follow these guidelines as
closely as you can

1. All subfields within a MIAP should be defined with the same usage (I, O or B).

2. MIAP subfields with a usage of Neither should be avoided.

3. ISO-type MIAP subfields should be avoided.

Chapter 10: Modifying Action Diagrams 541

Understanding Contexts

Generated Source

Using either multiple-instance array parameters or the related *MOVE ARRAY built-in
function results in additional fields and structures (and the code to initialize and process
them) to be generated in your source. These fields and structures can significantly
increase the size of the source member. Therefore you can control the level of in-line
source commenting through the YGENCMT model value, as follows:

*STD

A single comment line is generated for each multiple-instance array definition,
control structure definition and initialization

*ALL
A comment line is generated for each multiple-instance array subfield definition,

control structure subfield definition and initialization

Note: This is the only difference between YGENCMT(*STD) and YGENCMT(*ALL);
switching between these two values does not affect any other comment generation
within your source code.

Enhanced Array Support Usage

The following sections show how you can use the Enhanced Array Support in CA 2E
panels.

542 Building Applications

Understanding Contexts

Edit Function Parameters Panel

The new functionality allows you to specify, in the Edit Function Parameters panel, that
a parameter should be passed as an array, rather than passed as a single-instance
structure.

Op: 2/17/11 15:20:16
EDIT FUNCTION PARAMETERS
Function name. . : Retrieve customer records Type : Execute external function
Received by file : Customer Acpth: xNONE
Passed Pgm Par
File/xFIELD Access path/Field/Array Ctx Ctx
xFIELD Customer number L

XArrays Customer Array

Values
One parameter per field: FLD
One parameter for all fields: RCD Pass as Array:

One parameter for key fields only: KEY Pass as Array:

SEL: Z-Parameter details X-Object details D-Delete parameter N-Narrative
F3=Exit F5=Reload F23=More options

This is done using the new ‘A’ (Pass as Array) field as follows:
m Enter Y when the parameter should be passed as array.

m Leave this field blank when the parameter is a single-instance structure.

The following situations apply when using the 'A' (Pass as Array) field:

m [f the function is not an EXCEXTFUN or an EXCUSRPGM, the field is not available on
this panel.

m Specifying 'Y'is only valid when the parameter is an array based on the *Arrays file,
and only when the parameter is passed as RCD or KEY.

Chapter 10: Modifying Action Diagrams 543

Understanding Contexts

Edit Function Parameter Details Panel

EDIT FUNCTION
Function name.
Received by fil

For EXCEXTFUN and EXCUSRPGM only, there are two new values for the Passed as field:
m RCD(ARRAY) = Parameter is defined using RCD structure and passed as array.

m KEY(ARRAY) = Parameter is defined using KEY structure and passed as array.

When Passed as has a value of RCD (ARRAY) or KEY (ARRAY), the new Number of
elements field displays the number of elements defined for the array being passed. You
can view and modify the array definition by visiting the *Arrays file. If you use option D
to drop any fields, an error message displays.

Op: 2/17/11 15:24:03
PARAMETER DETAILS
Retrieve customer records Type : Execute external function
e : Customer Array: Customer Array

Parameter (file) : xArrays Passed as: RCD (ARRAY)

Field

Customer
Customer
Customer
Customer
Customer
Customer

Number of elements : 100
Role Flag error
number MAP
prefix MAP
first name MAP
last name MAP
suffix MAP
since date MAP

SEL: Usage: I-Input, O-Output, B-Both, N-Neither, D-Drop.

Role: R-Restrict, M-Map, V-Vary length, P-Position. Error: E-Flag Error.
F3=Exit

544 Building Applications

Understanding Contexts

Edit Action Diagram Panel

When a parameter is not passed as an array the behavior of the Edit Action Diagram
panel remains the same as previous versions of CA 2E. However, where a parameter is

being passed as an array, there is a new single subfile line that indicates an array being
passed.

Note: If the called function’s parameter interface is modified to toggle the parameter
Passed as Array field from Y to blank, the behavior of the EDIT ACTION — FUNCTION
DETAILS changes accordingly to match.

B29-020
Function A

B28-020
Function B

10B
A, indicating an Array.
Obj Typ

ARR, indicating array.

Chapter 10: Modifying Action Diagrams 545

Understanding Contexts

Ctx
Only PAR or ARR is allowed.

Note: This is an input capable field. ARR is always valid as a choice when the called
function’s parameter is passed as an array. However, if you select PAR, but the
definition of the array on the calling function is incompatible with the definition of
the array on the called function, a warning is sent (after PAR is selected) and the
change to PAR cannot be saved/completed.

Object Name
Item, indicating the name of the array.
Note: This field is output only.

The array’s subfields and their usages are NOT shown on this panel. But you could
examine Function B’s parameter interface (and detailed usage) via F9=Edit Parms.

This screen shows what the function call will look like for passing an array called /tem:

When a parameter is being passed as an array,the context defaults to ARR if F10=default
parms is used. If the context is changed to PAR, the panel validates that the selected
array is available in the PAR context and that all array subfields have compatible usages.

Note: MIAPs do not automatically get defaulted to PAR/PRn context, even when they
are available. Your choices for populating MIAP parameters are:

m Manually specify ARR context which is always valid.

m Manually specify PAR/PRn contexts if available.

m Prompt for available contexts.

m Use F10 to default MIAPs to use ARR context.

546 Building Applications

Understanding Conditions

Understanding Conditions

A condition specifies the circumstances under which an action, a sequential statement,
or an iterative statement is to be executed. Conditions define a particular value for a
field. The following examples demonstrate how conditions control processing.

A condition controlling a simple action would be an instance where, if a field’s condition
is met, a simple action takes place.

.—CASE

| -RCD.*SFLSEL is *SELECT
| Display record details

A condition controlling a sequence of actions would be an instance within a CASE
construct where, if a field’s condition is met, a sequence of actions executes.

.—CASE

: Display record details

| -RCD.*SFLSEL is *SELECT
I
I
!

—-ENDCASE

A condition controlling an iterative constant would be an instance within a REPEAT
WHILE construct where while a field’s condition is met, a simple action takes place

.= REPEAT WHILE

| -RCD.Status is Held
| Display record details
‘—-ENDWHILE

Similarly, you could define multiple conditions within the same CASE construct to test
for various conditions and the actions to take.

.—CASE

-RCD.*SFLSEL is *SELECT
Display record details
-RCD.*SFLSEL is *Delete
Delete record details
-*QTHERWISE

Update record details
—ENDCASE

Chapter 10: Modifying Action Diagrams 547

Understanding Conditions

Condition Types

Condition types allow you to define a particular type of processing based on some form
of conditional criteria that you specify in the logic of your action diagram. CA 2E
specifies four different condition types that can be used within an action diagram.

Values (VAL) Conditions Type

The Value Conditions (VAL) type is used for conditions that specify a value that a field
can receive. You only use the VAL condition type with status (STS) fields.

You specify two related values for a value condition: an internal value that is held in the
database file and against which the condition is checked; and an external value that the
user enters on the external function application panel. CA 2E generates the necessary
code to interpret the values. The internal and external values can have different lengths;
you can use the value mapping facility to facilitate translation between the disparate
values.

To use value mapping you must specify Y for the Translate field on the Edit Field panel.

For more information:

m On the conditions file and the Convert Condition Value command (YCVTCNDVAL)
used to convert the file, see the CA 2E Command Reference Guide.

m On VAL, see Defining a Data Model, Using Conditions section in the chapter
"Understanding Your Data Model."

Values List (LST) Condition Type

The Values List (LST) Condition type is used for conditions that specify a list of values
that a status field can receive. Each condition list consists of one or more value (VAL)
conditions.

You can only use the LST condition type for fields of type status (STS). For fields of type
STS, CA 2E creates a special list condition *ALL VALUES whenever you define field
conditions.

If you specify a value for the Check Conditions prompt on the Edit Field Details panel or
the Edit Entry Details panel, CA 2E generates code to ensure that any value that you
enter is one of the allowed values.

CA 2E generates, by default, the code necessary to display a list of values for fields of
type status (STS) whenever you type ? in the field or press F4 with the cursor positioned
on the field. However, CA 2E only generates the code for the list display if the field is of
type STS and if you have defined a check condition for the field.

For more information on LST, see the Using Conditions topic in Defining a Data Model in
the chapter "Understanding Your Data Model.".

548 Building Applications

Understanding Conditions

Compare (CMP) Condition Type

Examples

The CA 2E Compare (CMP) condition type is used for conditions that specify a scope of
values that a field can receive. The scope of values is defined in terms of a fixed value
and an operator. The fixed value is a CA 2E field; the operator is a symbol expressing
some form of Boolean logic.

The following is a valid list of operators:

Value Description

*EQ equal to

*NE not equal to

*GT greater than

*LT less than

*GE greater than or equal to

*LE less than or equal to

*IS for comparison to PGM *Cursor field

Note: You can use the CMP condition type for field types other than STS

m Order quantity is GT 10
m Credit limitis LT 1,000.00

For more information on CMP, see Defining a Data Model in the chapter "Understanding
Your Data Model," Using Conditions topic.

Rande (RNG) Condition Type

Example

The Range (RNG) condition type is used for conditions that specify a range of values that
a field can receive. The range of values is defined in terms of two fixed values between
which the value must lie including starting and end points. You can use the RNG
condition type for field types other than STS.

m Order quantity is between 10 and 100

m Transaction value is GT 25 and LE 250

For more information on RNG, see Defining a Data Model in the chapter "Understanding
Your Data Model," Using Conditions topic.

Chapter 10: Modifying Action Diagrams 549

Understanding Conditions

Compound Conditions

CA 2E compound conditions provide you with the ability to use complex condition
expressions in any context where a simple action diagram condition is used.

Use Boolean logic operations as AND or OR in condition tests. There are three aspects of
compound condition expressions:
1. The ability to AND together or OR together condition tests.
For example: (a AND b AND c), (a ORb OR ¢)
2. The ability to parenthesize and mix logical operators.
For example: (a AND b) OR (c AND d)
3. The ability to test negation.
For example: (a AND b) OR NOT c

CA 2E provides the following default logical operators for use with compound

conditions:

Value Description

& AND operator

| OR operator

(left parenthesis
) right parenthesis
! NOT operator

These operators can be modified by changing the YACTCND model value using the
YCHGMDLVAL command.

550 Building Applications

Understanding Conditions

Defining Compound Conditions

1.

Zoom into the user points. At the Edit Action Diagram panel, press F5 to view the
user points for the function.

The Edit User Exit Points window appears.

Zoom into a selected user point. Type Z next to the selected user point and press
Enter.

The next level of the action diagram appears.

Insert a CASE condition. Type v at the selected point and press Enter.

The new case appears.

Zoom into the condition. Type FF next to the new condition and press Enter.
The Edit Action - Condition Window appears.

Define the compound condition. Press F7.

The Edit Action - Compound Condition panel appears.

Enter the compound condition using the logical operators mentioned previously.

Note: On the Edit Action - Compound Condition panel you have an input-capable,
240-character field.

Enter the condition variables on the input-capable line.

CA 2E creates the undetermined condition statements on the lower portion of the
panel. At this point, you can enter F against the condition to display the Edit Action -
Condition panel at which point you can specify the condition.

EDIT ACTION DIAGRAM

F3=Prev block
F7=Find

Edit Ticket Reservaticn

Prompt Ticket Reservation

SYMDL
FIND==
I(C,I,8)F=Insert co
I{AE,Q %, +,-,=,=4)

> USER: Initialize subfile record(existing record)
.PGM. *Record selected = CND. *NO

. -CASE

> Order is

<<<
<<<
| Held or 0ld Customer Over Credit Limit
| (¢l er (c2 BND MOT o3}
. | -cl:RCD.Order Status is *Held
.| -cz:CTL.Amount Due *GT CTL.Credit Limit
\
\
\
\

e

<

<

i
-c3:CTL.Date of Last Order is *Not Present
. —Print Crder

PGM. *Record

-ENDCASE

e
<<<
szlected = CND. *YES

B3

B33

F5=Usger pointe
Fe=Boockmark

Fé=Cancel pending movesg
F9=Parameters

F23=More options
F24=More keys

Note: Once you define a compound condition in the action diagram, type F next to the
condition. CA 2E displays the Edit Action - Compound Condition panel.

Chapter 10: Modifying Action Diagrams 551

Understanding Shared Subroutines

Understanding Shared Subroutines

The main objective of shared subroutines is to optimize the generation of internal
functions that are implemented as subroutines. The first instance of generated source
for the function is reused for all subsequent calls to the function within an action
diagram instead of being repeatedly regenerated. These changes apply to CHGOBJ,
CRTOBJ, DLTOBJ, RTVOBJ, and EXCINTFUN function types.

Some advantages of shared subroutines are:
m The volume of source code is reduced and therefore programs generate faster.
m Fewer subroutines result in smaller and therefore faster executing programs.

m Moving the interface outside shared subroutines facilitates changes required for ILE
(Integrated Language Environment) generation.

552 Building Applications

Understanding Shared Subroutines

Externalizing the Function Interface

When the interface to a subroutine is inside the subroutine, each time it is called a new
version of the subroutine is required. To externalize the function interface, a unique
internal work field is assigned for each parameter field and the interface is generated as
Move statements before and after the subroutine call. The names of the internal work
context fields are generated in a similar fashion to that of Neither parameters. This
provides up to 10,000 unique field names in a given program.

When an internal function is called:

1. The function’s Input and Both parameters are moved to the new internal work
context prior to the call.

2. Within the called function, this internal work context is used instead of the original
PAR context.

3. Output and Both parameters are moved back to the return context after the
subroutine call.

Note: The Moves required before and after calling a subroutine increase overhead
somewhat. If a function has more parameters than executable statements, then reusing
the subroutine increases the number of source lines generated.

You control the sharing of subroutines using the Share Subroutine (YSHRSBR) model
value and its associated function option. The table shows the valid values; function
option values are shown in parentheses. The default is *NO.

Value Description

*YES (Y) Share generated source for subroutines.
Generate source code the first time an
internal function is called and reuse the
source for all subsequent calls to the
function. The interface for the subroutine
is externalized.

*NO (N) Generate source code each time an
internal function is called. The interface
for the subroutine is internal.

The YSHRSBR model value and function option are available on the CHGOBJ, CRTOBJ,
DLTOBJ, RTVOBJ, and EXCINTFUN function types.

In addition, the Generate as subroutine? function option is provided for the EXCINTFUN
function type to indicate whether to implement the function in-line or as a subroutine.
The default is not to generate as a subroutine.

Chapter 10: Modifying Action Diagrams 553

Understanding the Action Diagram Editor

Using Shared Subroutines with EDTFIL, EDTTRN, EDTRCD

By default, the EDTFIL, EDTTRN, and EDTRCD(n) functions contain a call to the CHGOB)
and DLTOBIJ functions of the owning file. When they are generated as subroutines, they
include a section of code that checks whether the record about to be deleted or
changed has been changed by another user since being displayed to the screen.
However, if the same CHGOBJ or DLTOBIJ functions are inserted elsewhere in the action
diagram of an EDTxxx function, this code is not generated. Consequently, if the CHGOB)
or DLTOBIJ functions are marked for sharing, any EDTxxx function that contains both the
default instance and more than one further instance of that internal function generates
two separate subroutines—one used only at the default user point containing the
previous code and one for use at all other points that does not contain this code.

Understanding the Action Diagram Editor

Selecting Context

The action diagram editor lets you modify the default processing logic that is
automatically supplied for a function. It also provides the ability to add, change, or
delete actions at appropriate points in the structure of a function. These points are
called user points.

To select a context use the steps in the previous topic, Defining Compound Conditions,
and the following steps.

1. From the Edit Action - Condition panel enter the context you want to select or a
question mark ? in the Context field and press Enter.

The Display Field Contexts panel appears.

2. Depending on the type of function you are editing and the point in the action
diagram, select the context.

Entering and Editing Field Conditions

With the action diagram editor you can add, modify, and delete conditions.

554 Building Applications

Understanding the Action Diagram Editor

Adding Conditions

Deleting Conditions

Line Commands

To add conditions use the following steps:

1.

From the Edit Action - Condition panel type ? in the Condition field and press Enter.
Or do the following:

From the Edit Database Relations panel type Z2 next to the file to field relation for
which you want to define conditions.

The Edit Field Details panel appears.

From this panel, change any of the field attributes and add any narrative text.
Press F9 to view the field conditions.

The Edit Field Conditions panel appears.

Enter a new condition. Type the name of the condition in the Enter Condition field
and the condition type, VAL or LST for status fields or CMP and RNG for non-status
fields and type Enter.

The Edit Field Condition Details appears.

If your field is of type status, type the internal file value associated with the
condition name. For instance, P for the field condition Paid.

If your field is of any type other than status and the condition type is range (RNG),
type the From and To range.

If your condition type is Compare (CMP), type the comparison operator (EQ, GT)
and the comparison value.

To delete conditions, use the following steps:

1.

From the Edit Field Conditions panel, type D next to the condition that you want to
delete and press Enter.

Note: If the field condition is used in the function logic processing of any function,
you are not able to delete it until you resolve the function references.

Press U to view a list of references for your field condition.

The line commands available for use with the action diagram editor appear above the
panel subfile and are listed and described next and on the following pages. You can
prompt for the complete list of line commands by typing ? in the line command
positioner field. The F as a suffix on the command prefills any fields with question marks
for prompting.

Chapter 10: Modifying Action Diagrams 555

Understanding the Action Diagram Editor

I (Insert)

There are several insert line (1) commands that you can use in the action diagram editor
to insert constructs. You can use the insert line command to insert constructs in action
diagram shells or even within other constructs.

M or MM (Move) (A or B)

IA (IAF)—Inserts an action within a construct or in an action diagram shell.
IC (ICF)—Inserts a condition within a CASE construct.

IE(IEF)—Inserts a *EXIT PROGRAM built-in function.

Il (IIF)—Inserts an iterative construct within a REPEAT WHILE construct.

IS (ISF)—Inserts a blank sequential construct.

I* (I*F)—Inserts a comment at any point within the user point.

IM (IMF)—Calls a message function at a particular point within the action diagram.
When you enter IM in the action diagram user point, the Edit Message Functions
panel appears.

I0—Inserts an otherwise clause.
1Q(1QF)—Inserts a *QUIT built-in function.
IX (IXF)—Inserts a new condition within the CASE construct.

I+ (I+F)—Calls the *ADD (add) built-in function. This takes you to the Edit Action -
Function Details panel.

(I-F)—Calls the *SUB (subtract) built-in function. This takes you to the Edit Action -
Function Details panel.

I= (I=F)—Calls the *MOVE (move) built-in function. This takes you to the Edit Action
- Function Details panel.

I=A—Calls the *MOVE ALL (move all) built-in function. This takes you to the Edit
Action - Function Details panel. You can also use | = =.

I=M—Calls the *MOVE ARRAY (move array subfield) built-in function. This takes you
to the Edit Action - Function Details panel.

The move (M) line command allows you to move a construct to a point that you
designate within the action diagram shell, either A (after) or B (before).

The move block (MM) line command allows you to move a block of constructs to a point
that you designate within the action diagram shell, either A (after) or B (before). The
MM line command must be paired with another MM line command at the same
construct level.

This command does not edit the field context for the new user point.

556 Building Applications

Understanding the Action Diagram Editor

C or CC (Copy) (A or B)

D or DD (Delete)

N (Narrative)

PR (Protect)

R (References)

U (Usages)

The copy (C) line command allows you to copy a construct to a point that you designate
within the action diagram shell, either A (after) or B (before).

The copy block (CC) line command allows you to copy a block of constructs to a point
that you designate within the action diagram shell, either A (after) or B (before). The CC
line command must be paired with another CC line command at the same construct
level.

This command does not edit the field context for the new user point.

The delete (D) line command allows you to delete a construct.

The delete block (DD) line command allows you to delete a block of constructs. The DD
line command must be paired with another DD line command at the same construct
level.

The narrative (N) line command lets you edit the object narrative for the selected
function or message.

The protect action diagram block (PR) line command lets you protect a selected action
diagram block. Requires *DSNR with locks authority.

For more information on protecting action diagram blocks, see this chapter, Protecting
Action Diagram Blocks.

The references (R) line command displays references for the function or message
referenced by the selected action diagram entry. For functions, references are expanded
to the first external function; for messages, references are expanded to the next level.
Note that changes to the action diagram are not reflected in the references until the
function is updated.

The usages (U) line command displays usages for the function or message referenced by
the selected action diagram entry. Note that changes to the action diagram are not
reflected in the usages until the function is updated.

Chapter 10: Modifying Action Diagrams 557

Understanding the Action Diagram Editor

V (View Summary)

The view summary (V) line command displays a summary of selected block.

S (Show)
The show (S) line command allows you to reverse the effect of hiding a construct.

H (Hide)
The hide (H) line command allows you to hide a construct. The construct executes in the
normal fashion. However, instead of displaying all lines in the construct, only one line
displays indicating that the construct has been hidden.

Z (Zoom)

The zoom (Z) line command allows you to focus in on a particular construct and display
all ancillary parts of the construct. This command also allows you to navigate your way
through embedded constructs or into an action diagram of an embedded function.

Adding an Action —IA Command

The following example shows the effect of adding a new action (lA):

> FUNCTION > FUNCTION
IA - Action 1 ——ENTER—| : Action 1

: Action 2 : New Action

- : Action 2

558 Building Applications

Understanding the Action Diagram Editor

Deleting Constructs—D Line Commands

Non-protected constructs can be deleted by placing a D against the line.

> FUNCTION > FUNCTION

D : .=REPEAT WHILE | —ENTER—— . Action 2
[-Condition 1 - -
;| Action 1
;' —-ENDWHILE
: Action 2

Moving a Construct—M and A Line Commands

Non-protected constructs can be moved from one position in the action diagram to
another. To move a construct, place an M against the construct that is to be moved, and
an A against the line of the action diagram after which the construct is to be moved.

> FUNCTION > FUNCTION
M : =REPEAT WHILE : Action 2
;| -Condition 1 —ENTER— : .=REPEAT WHILE
;| Action 1 | -Condition 1
: —ENDWHILE ;| Action 1
A 1 Action 2 : ‘—ENDWHILE

Function Keys

The following is a list of function keys that are used within the Action Diagram Editor.

Function Description

F3 Returns the cursor to the position of the
previous zoom. If no previous zoom, exits
the action diagram.

F5 Display user points

F6 Cancel pending move operations

Chapter 10: Modifying Action Diagrams 559

Using NOTEPAD

F7

Scan backward

F8

Creates a bookmark for the current cursor
location in the action diagram and adds it
to the list of bookmarks. See F20.

F9

Edit Function Parameters

F12

Enzyme, one block at a time.

F13

Exit the action diagram

F14

Display CA 2E Map

F15

Open Function Panel

F16

Toggle change date

F17

Display Action Diagram Services panel to
search for function, field, change date or
any syntax error found in the action
diagram.

F18

Access or leave Notepad

F19

Edit device design

F20

Display bookmarks. Select a bookmark to
quickly position to that point in the action
diagram.

F21

Toggle implementation names and
function types.

F23

View more line commands

F24

View more command keys.

ENTER

Execute line commands

HELP

Display help text

ROLLUP

Show next page of work area

ROLLDOWN

Show previous page of work area

Using NOTEPAD

The notepad utility allows you to copy constructs from one action diagram to another.
When using Open Functions, this utility lets you save the contents of a diagram to a
work area and copy those contents elsewhere.

560 Building Applications

Using NOTEPAD

NOTEPAD Line Commands

The Notepad line commands are described next.

NI (NOTEPAD Insert)

The notepad insert (NI) allows you to insert the contents of a notepad at a point after
the line on which the cursor is positioned.

NA or NAA (NOTEPAD Append)

The notepad append (NA) line command allows you to copy the contents of a construct
to a notepad and to append them to the existing contents of the notepad.

The notepad block append (NAA) line command allows you to copy the contents of a
block of constructs to a notepad and to append them to the existing contents of the
notepad. The NAA line command must be paired with another NAA line command at the
same construct level.

NR or NRR (NOTEPAD Replace)

The notepad replace (NR) line command allows you to first clear the contents of the
notepad, and then to replace the existing contents of the notepad with a new construct.

The notepad block replace (NRR) line command allows you to first clear the contents of
the notepad, and then to replace the existing contents of the notepad with a new block
of constructs. The NRR line command must be paired with another NRR line command
at the same construct level.

You can toggle between the notepad action diagram from the action diagram you are
editing by pressing F18.

Chapter 10: Modifying Action Diagrams 561

Using NOTEPAD

User-Defined *Notepad Function

You can specify the file and name of a user-defined *Notepad function in the model
profile. This function can be either an EXCINTFUN or EXCEXTFUN function type. A
user-defined *Notepad function can serve as a repository of standardized action
diagram constructs that you can easily copy into the action diagrams of other functions.

Use the Edit Model Profile (YEDTMDLPRF) command or the Edit Model Profile option on
the Display Services Menu to specify a user-defined *Notepad function.

User-defined *Notepad function

Edit Modell Profile

Model profile . . . @ JAR

Model+ MYMOL
Session list JAR | Name, *MDLVAL
Log changed objects ¥ Y=Yes, N=No
Component change processing . N Y=Yes, N=No
Yiewonly N Y=Yes, N=No
Model list for commands . . . JAR | Name, #*USER
User option file QRUOOPT Name, QRUOOPT

Library name e #L 1B Name, #*LIBL
User option member gaucoPY Name, *FILE
Edit model list full screen . N Y=Yes, N=MNo
Notepad function: \

Function file name Horse Y

Function name Edit File AD Reference
Action diagram full screen . N Y=Yes, N=No

More. ..
F3=Exit F5=Refresh F12=Cancel

If you do not specify a user-defined *Notepad function, the shipped non-permanent
*Notepad function is used by default. The shipped *Notepad function is also used if the
function specified in the model profile does not exist or if you select it as the primary
function to be edited.

Multiple developers may use the same user-defined *Notepad function. The first
developer to access the function has an update lock on it and can update it on exit.

562 Building Applications

* k%

, ™" (Activate/Deactivate)

*, ** (Activate/Deactivate)

The activate/deactivate line command (*,**) allows you to deactivate or activate a
construct or block of constructs. The * line command is used to toggle the
active/deactive flag for a construct. Deactivated constructs do not generate any
associated code, nor does any otherwise active construct that is nested. Deactivating a
construct is similar to wrapping an always false CASE structure around the construct.
The action of the * line command depends on the status of the construct.

If the construct is currently active, * deactivates that construct. This then displays using
the attributes of COLOR(WHT), DSPATR(HI). In addition, deactivated constructs have a
*** symbol displayed to the right of the action diagram line.

If the construct is currently deactivated, * reactivates that construct. The method of
display is now dependent on the activation status of its parent constructs. If any of its
parent constructs (within which it is nested) are currently deactivated, the construct still
displays as if it were deactivated but the symbol on the right will be a *. This indicates
that the construct has inherited the deactivation status of its parent construct.

_ >FUNCTION > FUNCTION

* . = REPEAT WHILE ~ . = REPEAT WHILE ***

__ | Condition 1 Press |™” .| Condition 1 *

:| Action 1 Enter | _ | Action1 ‘

_ | Action2 __ | Action2

. "_ENDWHILE . "_ENDWHILE
Action 3 ~: Action3

Note: The display of the * symbol for inherited deactivation is preserved for zooms into
hidden structures within the same action diagram. However, it is not preserved for
zooms into other action diagrams. These are deactivated only for use within the parent
function. They are not generated within that function, but because they are not
inherently deactivated, the deactivation is not indicated while editing them.

If a nested construct is currently deactivated when its parent construct becomes
deactivated, its own deactivation status is not changed and it remains deactivated. If it
is currently active, it inherits the deactivation status of its parent.

__ > FUNCTION __ =>FUNCTION

* . =REPEAT WHILE Press | : .= REPEATWHILE ***

__ | Condition 1 Ent __] Condition 1 *

_ | Action1 _erb __] Action1 *

_ | Action2 *** __ | Action2 woRE
: - ENDWHILE __ 1 '--ENDWHILE Krr

o Action 3 o Action 3

Chapter 10: Modifying Action Diagrams 563

Protecting Action Diagram Blocks

If a nested construct is currently deactivated when its parent construct becomes
reactivated, its own deactivation status is not changed and it remains deactivated. If it is
currently active, it no longer inherits the deactivation status of its parent and it is
reactivated.

_ >FUNCTION >FUNCTION
*7 . =REPEATWHILE *** | press : .= REPEAT WHILE
__] Condition 1 * __ | Condition 1
__] Action1 * Eni, __ | Action1
__] Action2 FEE __ | Action2 A
__ '--ENDWHILE e : '-- ENDWHILE
_ Action 3 Action 3

If a pair of **s is used, these must be defined at the same construct level. Each
construct at the same level as the ** has its associated active/deactive flag toggled. This
can lead to some constructs being deactivated and some being reactivated. Constructs
nested within these constructs are not updated but still inherit the deactivation of their
parent constructs.

_ > FUNCTION > FUNCTION
“* . = REPEAT WHILE . .= REPEAT WHILE ***
__] Condition 1 Press __ | Condition 1 *
__] Action1 Ent __ | Action1 *
__ | Action2 Foew i’ : | Action 2 o
_ : --ENDWHILE . '--ENDWHILE *oEE
o Action 3 o Action 3

Protecting Action Diagram Blocks

This feature lets a *DSNR with locks capability (*ALL authority to YMDLLIBRFA) prevent
all developers from editing, copying, moving, deleting, or inserting statements within
the protected action diagram block. You can protect a single action, a case block, an
iteration block, a sequence block, or a comment.

An important use for this capability is to protect standardized areas in the action
diagrams of your function templates.

For more information on function templates, see this module, Chapter 8, "Copying
Functions," Template Functions.

564 Building Applications

Protecting Action Diagram Blocks

Protecting a Block

In the action diagram, type PR against the block you want protected. The Edit Block
Protection panel appears for the selected construct or block.

EDIT BLOCK PROTECTION Hy Model
Block title Tupe
Btandard Action for Fdit File - Do not change Cas
Hide action diagram bleck ! H (¥=Yes, N=No)
Allow copy, move or delete blook . . . : H (Y=Yes,N=No)
Allow editing of block : H (¥=Yes, N=No)
Allow imsert element ¢t H (¥Y=Yes, N=No)

F3=Exit Fl12=Cancel

Note that the type of the block or construct appears; in this example, it is CAS for
case block. The type can be ACT, CAS, ITR, SEQ, or TXT.

1. If you specify a Block title, it displays in the action diagram for case, iteration, and
sequence blocks. You can specify up to 74 characters. The Block title does not
display for actions and comments; however, you can search for Block title text for
all protected blocks using the Action Diagram Services panel.

2. Specify the type of protection you want the block to have:

Protection Type Description Valid Blocks

Hide If Y, the protected block is hidden. Case
Iteration
Sequence

Allow Copy, Move or If N, developers are prevented from All

Delete copying, moving, or deleting the

block.
Allow Edit If N, developers are prevented from All

editing or inserting a block.

Allow Insert If N, developers are prevented from Case
inserting blocks within the protected |teration
block.

Sequence

Note: To insert a block, both Allow
Insert and Allow Edit must be setto Y.

Chapter 10: Modifying Action Diagrams 565

Using Bookmarks

3. Press Enter and then F3 to exit.
Note: Only the specified block is protected, not blocks embedded within.

Protected blocks appear as if they were part of the action diagram prototype.

Using Bookmarks

A bookmark is a record of a location in the action diagram that you can use later to

quickly return to the marked location. You can create any number of bookmarks in an

action diagram.

To create a bookmark, place the cursor on the line in the action diagram where you

want the bookmark and press F8.

EDIT ACTIDN DIAGRAM Edit MYMDL Horse
FIND=> Edit Horse
FsFF=Function H=Hide S=Show PR=Protect MH=Narrative V=View summary
R=References T=Top U=Usages 2=Zoon

» USER: Validate subfile record relations
I (444
_ .=CASE L4414
_ \-RCD.Dam Date of birth GE RCD.Date of birth <<
—_ i Send error message - 'Dam younger than horse' L
_ '=ENDCASE <L
J— .-CASE 1444
_ 1-RCD.Sire Date of birth GE RCD.Date of birth (444
_ i Send error message - 'Site younger than horse' <4<
_ '=ENDCASE 1444
. .~-CASE (444
_ 1=RCD.*SFLSEL is *Zoonm#l <L
| I i Display Racing results - Race Entry = <<
_ | PGM.xDefer confirm = CND.Defer confirm {44
_ i PGH.*Reload subfile = CHD.=*YES (444
__ . '-ENDCASE (44
F3=Prev block Fb5=User points F6=Cancel pending moves F23=More options
Fe=Find FB=Bookmark F9=Parameters F24=More keys

566 Building Applications

Using Bookmarks

Each bookmark you create is added to a list of bookmarks. Press F20 to display a list of
the existing bookmarks for the action diagram.

: Action Diagram Bookmarks :
. ¥=Select D=Delete :
> USER: Validate subfile record relations

. 1-RCD.Dam Date of birth GE RCD.Date of birth

. 1 Display Racing resulis - Race Entry *

Bottom ;
F3=Exit F12=Cancel :

Type X against a
bookmark to select it and return to the marked location in the action diagram; type D against a bookmark to delete
it. Press Enter.

By default, a bookmark is identified on the bookmark list by its text from the action
diagram. This can result in similar or identical entries in the bookmark list. For example,

' fAiction Diagram Bookmarks

. ¥=Select D=Delete

: B . ! Send error message - 'Sire younger than horse’
_ . 1=111 New condition
_ . 1=111 New condition
_ . 1 Display Racing results - Race Entry x

Bottom ;
F3=Exit Fl2=Cancel :

Chapter 10: Modifying Action Diagrams 567

Submitting Jobs Within an Action Diagram

To distinguish such entries, edit the text by typing over the existing bookmark text. For
example,

X=5elect D=Delete

: 0 . ! Send error message - 'Sire younger than horse'
_ Hew condition in Validate subfile tecord relations
_ Hew condition in Validate subfile tecord fields
_ . i Display Racing results - Race Entry =*

F3=Exit F12=Cancel

'
||||||||||||||||||||

Action Diagram Bookmarks

Bottom

'
..

If you delete the action

diagram entry associated with a bookmark, the bookmark is deleted. Otherwise, changes to the action diagram are

not reflected in the bookmark list.
You can maintain a separate list of bookmarks for each open function.

You can choose to save bookmarks when you exit a function. To do this, ensure that the
option on the EXIT FUNCTION DEFINITION panel called Save bookmarks is set to ‘Y AND
the Change/Create Function flag is set to Y. If you don’t set these flags to Y on exit, then
the Bookmark list disappears when you exit the function

Submitting Jobs Within an Action Diagram

This feature lets you specify within the action diagram that a function is to be submitted
for execution in batch using the Submit Job (SBMJOB) command. You can override the
SBMJOB command parameter defaults at the model, function, or action diagram level or
dynamically at run time. In addition, references to the submitted functions are visible
using CA 2E‘s impact analysis facilities.

Notes:

m Only EXCEXTFUN, EXCUSRPGM, and PRTFIL functions can be submitted for batch
execution using this method.

m This feature does not support function calls that contain multiple-instance array
parameters.

568 Building Applications

Submitting Jobs Within an Action Diagram

Inserting a SBMJOB in an Action Diagram

1. Go to the location in the action diagram of the function where the SBMJOB is to be
inserted and type IAF. Press Enter to display the Edit Action - Function Name

window.

Type the file and name of the function to be submitted for batch execution and
press Enter. If the function you specified is an EXCEXTFUN, EXCUSRPGM, or PRTFIL
function, the Submit job option appears. Type Y to indicate that the function is to

be submitted for batch execution.

The Overrides option specifies the source of the SBMJOB parameter overrides to

i EDIT ACTION - FUNCTION NAME
: Function file : [Bourse

i Function. . . : Print Course
: Comment . . .
! Submit job . : ¥ (Y=Yes, N=No)

¢ F3=Exit F?=Edit SBMJOB owerrides

EDIT ACTION - FUNCTION NHAME
: Function file

: Function. . . ! Print Course

: Comment . . .

: Submit job . : ¥ (Y=Yes, N=No)

: Overrides . * (#=MDLLVL, F=Function, L=Locall

F3=Exit Fr=Edit SBMJOB overrides

use for this call.

Value Description

* Model level

F Function level

L Action diagram (local) level

Chapter 10: Modifying Action Diagrams 569

Submitting Jobs Within an Action Diagram

Type the appropriate value.

2. If you specified L for Overrides, press F7 to specify local SBMJOB command
parameter overrides for this function. When finished, press Enter.

3. Specify parameters for the referenced function. Each parameter is formatted and
added to a command string that is ultimately invoked as the CMD parameter of the
Submit Job (SBMJOB) command.

Note: Performance degrades if you specify many individual parameters on the call.
As a result, it is recommended that you use RCD or KEY parameters only, rather
than FLD specifications.

Press Enter.

The action diagram displays with the completed action.

EDIT ACTION DIAGRAM Edit MYMOL Course
FIND=> Edit Course
FsFF=Function H=Hide S=Show PR=Protect N=Marrative V=View summary
R=References T=Tap U=Usages Z=Zoon
___ > USER: Extra processing after DBF update
.- £
B . SBMJOB: Print Course - Course =* <<

F3=Prev block F5=User points F6=Cancel pending moves F23=Hore options
F¢=Find I 8=Bookmark F9=Paraneters F24=More keys

Note: The SBMJOB: prefix indicates that the referenced function will be submitted
for batch execution.

4. Complete your work on the action diagram and save the function.

Defining SBMJOB Parameter Overrides

You can override the parameters of the Submit Job (SBMJOB) command at three levels
at source generation time and dynamically at run time. You can override any parameter
except CMD.

570 Building Applications

Submitting Jobs Within an Action Diagram

Source Generation Overrides

m Model level—The model level override is stored in a system supplied message
called *Sbmjob default override attached to the *Messages file. Edit this message
to define model level overrides. Function and local overrides default to the model
level.

®m Function Level—The F7 function key on the Edit Function Options panel lets you
edit parameters for the SBMJOB command at either the model or the function

level.
EDIT FUNCTION OPTIONS Hy Hodel
Function name . . : Print Course Type. : Print file
Received by file. : Course Acpth : Retrieval index
Header~fcoter . . : *STANDARD REPORT HEADIHGS <- Impllcltly set by mdl default
OPTION SEL VALID VALUES

Commit control

Generation mode . .

Device text constants

Copy back messages . . .
Send all error messages
Reclaim resources .
Generate error routine
Close down program . . . H
Overrides if submitted JOb H
Environment :-

M-Master, S-Slave, H-Hone)
M-MOLVAL. D-DDS. S-5GL. A-ACPVAL)
M-MDLVAL, L-LITERAL, I-HSGID)
M-MDLVAL, Y-Yes, N-Ho)

M-MDLVAL, Y-Yes, H-Ho)

Y-Yes, H-HNo)

M-MDLVAL, Y-Yes, H=Ha)

¥Y-Yes, N-No)

*-MDLLVL., F=fFunction !

M=z IIDIFEE

Hore...

F3=Exit F5=Select header-footer F?=Edit SBNJOB override F10=All options

The Overrides if submitted job function option specifies the source of the SBMJOB
parameter overrides and which level of overrides you are editing when you press
F7. The values are:

Value Description

* Model level. Use the default overrides defined by the *Sbmjob
default override message attached to the *Messages file in
Y2USRMSG. Press F7 to edit the model level overrides.

F Function level. Use the override defined for this function. You
define or edit the function level default using F7 on the Edit
Function Options panel. If not specified, it defaults to the model
level override

Chapter 10: Modifying Action Diagrams 571

Submitting Jobs Within an Action Diagram

To specify a function level override, set the function option to F and press F7 to edit
the SBMJOB command parameters.

Note: You also need to specify F for the Overrides option on the Edit Action - Function
name window in the action diagram for the function level overrides to take affect. You
can also edit the function level overrides at that point.

m Action Diagram (Local) Level—The Edit Action - Function name window provides
two additional options for EXCEXTFUN, EXCUSRPGM, and PRTFIL functions:

m Submit job indicates whether the referenced function is to be submitted for
batch execution:

Value Description
Y Submit the function to batch
N Process the function interactively

m Overrides specifies both the source of SBMJOB command parameter overrides
and which override level you are editing when you press F7. Note that this
parameter displays only if Submit job is set to Y.

Value Description

* Model level override. Use the model level override string stored in
the *Sbmjob default override message. Press F7 to edit the model
level overrides.

F Function level override. Use the override specified by the
Overrides if submitted job function option for the referenced
function. You can edit the function option overrides by pressing
F7.

L Action diagram level override. Use the override that has been
defined for this call. Press F7 to enter or edit local overrides.

To specify an action diagram level override set the Overrides option to L and press
F7 to edit the SBMJOB command parameters.

Note: Local overrides do not update the action diagram until you save the function on
exit. Function and model level overrides are updated immediately. If later you change
the function that is to be submitted to batch, any local SBMJOB parameter overrides
you previously specified are retained.

572 Building Applications

Submitting Jobs Within an Action Diagram

Dynamic Overrides

To provide a dynamic override to SBMJOB command parameters at run time, move the
keywords and parameter values into the new PGM context field *Sbmjob override
string. If this field is not blank at run time its contents are merged into the *Sbmjob
default override message, overriding any existing values.

The *Sbmjob job name, *Sbmjob job user, and *Sbmjob job number PGM context fields
facilitate additional processing for the submitted job; for example, handling spool files,
follow-on updates, lock manipulation, and any other processing that requires submitted
job information.

Special SBMJOB Considerations

Advantage of SBMJOB Over Execute Message
Some advantages of using the SBMJOB feature over Execute Message to submit
commands or programs for batch execution are:
m Numeric parameters can be passed.
m The complexities of constructing the submit job command string are hidden.

m References to submitted functions are visible by CA 2E impact analysis facilities.

Chapter 10: Modifying Action Diagrams 573

Viewing a Summary of a Selected Block

Viewing a Summary of a Selected Block

Type V against an action diagram block to view a summary of its contents. The Action
Diagram Summary window appears:

EDIT ACTION DIAGRAM Edit MYMOL Horse
FIND=> Edit Horse
............................. ﬁéiiaﬁ.ﬁi$§+$ﬁ.éﬁﬁﬁé;;“II.l...."..“‘lI.l'...".:
X=Select Z=Zoom T=Top !
: B > USER: Validate subfile record relations :

. .~CASE
_ . 1=RCD.Dam Date of birth GE RCD.Date of birth
_ . "-ENDCASE =* Contains hidden blocks . . . : ACT= 1
_ .=CASE

. 1-RCD.Sire Date of birth GE RCD.Date of birt

. '"-ENDCASE * Contains hidden blocks . . . : ACT= 1
_ .-CASE
_ . 1-RCD.=SFLSEL is =Zoon#i
_ . '-ENDCASE = Contains hidden blocks . . . : ACT= 3

Bottom :
F3=Prev block Fl12=Unzoom F13=Exit F16=Change dates FZ21=Imp names

; HidesShow blocks . : F2=ACT F4=CAS F6=ITR F8=SEQ F10=TXT H

574 Building Applications

Using Action Diagram Services

Note: You can also access the Action Diagram Summary window using the V option on
the User Exit Points window.

The summary lets you quickly select a portion of a large or complicated action diagram
for editing. Within the summary, you can easily zoom to a lower level (Z) and select a
block for editing (X).

The action diagram is summarized by hiding combinations of blocks. The last line of the
summary construct shows the type and number of blocks contained within that portion
of the action diagram; for example, the following indicates that the Case block contains
three (ACT=3) actions:

. .-CASE
. |-RCD.*SFLSEL is *Zoom#l
. ‘-ENDCASE * Contains hidden blocks . . . : ACT= 3

Use the following function keys to hide or show selected types of blocks

Function Key Description

F2 Hide and show actions

F4 Hide and show Case blocks

F6 Hide and show lIteration blocks
F8 Hide and show Sequence blocks
F10 Hide and show Comments

Using Action Diagram Services

Action Diagram Services lets you perform searches on functions, files, or fields in the
Action Diagram Editor. This utility also allows you to search according to date and for
any constructs that contain errors. You can specify the direction of the scan, the location
where the scan is to start, and the amount of detail to display for a successful scan.

In addition, you can use this panel to toggle full screen mode in the action diagram and
call functions from within an action diagram.

Chapter 10: Modifying Action Diagrams 575

Using Action Diagram Services

Scanning for Specified Criteria or Errors

Access Action Diagram Services by pressing F17 from the Edit Action Diagram panel.
The Action Diagram Services panel appears.

Action Diagram Services

Type choices, press ENTER.
Find option
Occurrences to process . .
Display find in context
Find function file name
Find function name:

Find field name :

Search for date :

Compare

Reset change dates
Full screen mode

Call function

Scan in titles and comments .:

Scan for implementation name :

SYNMDL

1 1=Criteria, 2=Error
1 1=Next, 2=All, 3=Previous
2 1=Exact, 2=Block, 3=User point
Name, *ALL
Name, *ALL
Name, *ALL
Usage . .: (I/0/B/U)
5/06/13 CYYMMDD
1=Less than, 2=Less than or equal to,
3=Equal to, 4=Greater than or equal to,

5=Greater than

Ignore case . : Y
(Y/N) Share find criteria . . : N
N (Y/N) Auto-scan functions . . : N

F3=Exit F7=Find F9=Command line F1l1=Conditions F12=Cancel F16=Y2CALL

1. To perform a search for specified find criteria, type option 1 in the Find Option field.

To specify the criteria of the search:

a. Inthe Find Function File Name field, type the name of the file, *ALL if you want
to search all files, or ? if you are uncertain of the file name.

576 Building Applications

Using Action Diagram Services

b. Type the name of the field in the Find Field Name field. To perform a search on
the field and/or context or usage, enter the field name and the context type.
You can enter the field name without entering the context; however, you
cannot enter the context or usage without specifying a field name.

c. Enter the date in YYMMDD format in the Search for Date field.

d. For a specific date comparison, select one of the options for the following
criteria:

Less than (for a date prior to the date).

Less than or equal to (for a date prior or equal to the search date)
Equal to (for a date equal to the search date)

Greater than or equal to (for a date after or equal to the search date)
Greater than (for a date after the search date)

a. Toscan only in block titles and comments, type the text to scan for in the Scan
in titles and comments option. The wildcard character ? indicates a generic
scan; a leading ? is not valid.

b. To search functions and messages for a specified source member name or
message identifier respectively, type the implementation name for the Scan for
implementation name option. To make the resulting action diagram display
clearer, press the F21 key when the search is successful.

To perform a search for syntax errors in the action diagram, from the Action
Diagram Services panel, type 2 for the Find option.

To search for matches to the specified criteria or errors in the action diagram, press
F7 to scan forward. To scan backwards, type 3 for the Occurrences to process
option.

Share find criteria is a Y or N option specifying whether the find criteria entered

on this screen are shared between open functions. If set to N, each open function

uses its own find criteria, which are initialized when the function is first opened and
are retained while the function remains open.

If set to Y, all open functions share a single set of find criteria. Changes made to
the find criteria (using this screen) when accessed from one open function are
retained and used for all other open functions.

N Open functions each use their own set of find criteria.
Y Open functions share a single set of find criteria.

Note: If this screen is accessed from a function and this value is set to Y, and
another function is subsequently opened, you can use F7 (Scan) immediately in that
function without the need to re-access this screen.

Chapter 10: Modifying Action Diagrams 577

Using Action Diagram Services

4. Auto-scan functions: This flag is only valid if Share find criteria is set to Y. This flag
determines whether the specified scan should be performed on a function as soon
as the function is edited. This flag is automatically set to Y if the F7 key is pressed to
exit this program and this program was called from the OPEN FUNCTIONS panel.
The autoscan functionality applies to any open functions, including the function
being edited when this program was called (if any) as well as to any functions that
are subsequently zoomed into.

N The specified scan will not be performed automatically on return from this
program—the user must press F7 when editing the action diagram of the function
to start the scan.

Y The specified scan is automatically performed on return from this program.
Note: Error checking is also available outside Action Diagram Services using the Check
Function Action Diagram (YCHKFUNACT) command or option 38 on the YEDTMDLLST

panel. If any errors are found, the action diagram is loaded and positioned to the first
error.

Calling Functions Within an Action Diagram

The Call function option lets you call an external function from within an action diagram.

Calling an External Function

1. Type the name of the function to be invoked on the first line of the Call function
option. This defaults to the function you are editing.

2. Type the name of the file the function is attached to on the second line. Press Enter.

3. Press F16 to invoke the Call a Program (Y2CALL) command. Adjust any parameters
and press Enter to invoke the call.

578 Building Applications

Using Action Diagram Services

Calling an Internal Function

Since an internal function cannot be called directly, you need to select an external

function that calls it.

Type ? for the Call function option and press Enter. The Select External Function
panel displays showing usages for the function you are editing. External functions

are highlighted.

Action Diagram Services

Type choices, press ENTER.
Find option
Occurrences to process .
Display find in context
Find function file name
Find function name .
Find field name

Context

Search for date

Compare

Scan in titles and comments .
Scan for implementation name
Reset change dates .

Full screen mode

Call function

F3=Exit F7=Find F9=Command line

SYNMDL

1 1=Criteria, 2=Error
1 1=Next, 2=All, 3=Previous
2 1=Exact, 2=Block, 3=User point
Name, *ALL
Name, *ALL
Name, *ALL
Usage (1/0/B/U)
5/06/13 CYYMMDD
l=Less than, 2=Less than or equal to,
3=Equal to,

4=Greater than or equal to,

5=Greater than

Ignore case . : Y
(Y/N) Share find criteria . . : N
N (Y/N) Auto-scan functions . . : N
Edit Horse
Horse
Fll=Conditions F12=Cancel F16=Y2CALL

Chapter 10: Modifying Action Diagrams 579

Additional Action Diagram Editor Facilities

3.

If the display of usages is extensive, use the function keys to position the display to
the appropriate function.

For more information on use of the function keys for this panel, see the online help.

Use the selection options to select a function from one of the three displayed
columns, which are numbered from left to right. Press Enter.

The Action Diagram Services panel redisplays with the selected function’s name and
file displayed for the Call function option.

Action Diagram Services Hy HModel
Type choices, press ENTER.
Find option
Ocourrences to process . . .
Display find in context

1=Criteria, 2=FError
1=Next, 2=A11, 3=Previous
1=Fxact, 2=Block, 3=User point

Ino =10

Find function file name Name, #ALL

Find function name Name, #ALL

Find field name Name, #ALL
Context Usage _ (1-0-B)

: _BsBO/BA CYYMMDD
1=Less than, 2=Less than or equal to,

Search for date
Compare

3=Fqual to, 4=Greater than or equal to.
5=Greater than
Scan in titles and comments Ignore case . ' ¥
Scan for implementation name :
Reset change dates I & 1))}
Full soreen mode L | (Y/MN)
Call fumstion : Edit Horse
Horse
F3=Exit F5=Refresh F7=Find F9%=Command line F12=Cancel F16=Y2CALL

Press F16 to prompt the Call a Program (Y2CALL) command. Adjust any parameters
and press Enter to invoke the call.

Additional Action Diagram Editor Facilities

CA 2E makes the following additional facilities available to you while you are in the
action diagram.

Editing the Parameters

To modify your current action diagram parameters, press F9 from the Edit Action
Diagram panel. CA 2E displays the Edit Function Parameters panel. To return to the
action diagram press F3.

For more information on modifying parameters, see Chapter 5, "Modifying Function
Parameters."

580 Building Applications

Additional Action Diagram Editor Facilities

Togdling to Device Designs

To toggle to the device design associated with the current action diagram, press F19. To
return to the action diagram, press F3 and then F5.

Full Screen Mode

In full screen mode, no subfile option or function keys display on the Edit Action
Diagram panel and the subfile page is expanded to fill the space. The Action diagram full
screen option in the model profile sets the default mode. You can override this value for
any function using the Full screen mode option on the Action Diagram Services panel.
Use this option to return to normal mode.

Following is an example of the action diagram in full screen mode:

EDIT ACTION DIAGRAM Edit MYMOL Horse
FIND=> Edit Horse

> USER: Validate subfile record relations

- <L
_ .=CASE (£ 44
. i-RCD.Dam Date of birth GE RCD.Date of birth 1444
. i Send error message - 'Dam vounger than horse' <
__ . '-ENDCASE (444
_ . .-CASE (444
___ . 1=-RCD.Sire Date of birth GE RCD.Date of birth (244
. i Send error message - 'Sire younger than horse® <L
___ . '-ENDCASE <«
__ . .-CASE <<
_ . 1-RCD.»SFLSEL is =Zoonmitl {4
— i Display Racing results - Race Entry =x [£44
_ i PGM.*Defer confirm = CND.Defer confirm (444
_ i PGM.*Reload subfile = CHD.»YES (444
___ . '-EHDCASE <<

Chapter 10: Modifying Action Diagrams 581

Additional Action Diagram Editor Facilities

Todgling Display for Functions and Messades

The F21 function key lets you toggle the information displayed for functions and
messages. For functions, the implementation name and function type display; for
messages, the message id and message type display.

For example, the following is the default display for a function.

-CASE

-RCD.*SFLSEL 1is *Zoom#l
Display Racing results - Race Entry
PEM. *Defer confirm = CND.Defer confirm e

L5
e

* MYALDFR B

PCM. *Reload subfile = CHD.*YES L

-EMDCASE e
Press F21 a second time to display the function type:

Acticn Diagram Services SYNMDL

Find option

Compare

Call function

Search for date

Fi=Exit F7=Find
Editing and Maintaining Functions Simultanecusly

Type choices, press ENTER.

Occurrences to process . . .
Display find in context
Find function file name
Find function name
Find field name

Scan im titles and comments
Scan for implementation name
Reset change dates
Full screem mode

F&=Command Lline

e e e e e e e . w21 1=Criteria, I=Error

on 1 1=Mext, I=All, 3=Previocus
12 l=Emact. 2=Block. 3=User point

Wame, *ALL
Wame, *ALL
Wamez, *&LL
Usage . . . : {LrOSBIAUY

T OBJBESLZ CYYMMDD

l=Less than, 2=Less than or egual to.
3=Equal te,d=Greater tham or equal to,
S=Greater than

Ignore case . : Y
(%N Share find criteria . . : N
{¥IN) Aute-scan functions . . @ M

Fll=Conditions Fli=Cancel Fle=Y2CALL

You have the ability to open, edit, and maintain several functions

simultaneously.

You have the ability to open, edit, and maintain several functions simultaneously.

582 Building Applications

Additional Action Diagram Editor Facilities

Starting Edits for Multiple Functions

To open multiple functions for a file simultaneously, use either of the following panels.
m Edit Functions panel—Enter O for each of the functions you want loaded.

Note: If you enter O for a function on the Edit Functions panel, any subsequent F or
S subfile select option you enter is interpreted as O.

m Edit Model Object Lists panel—Enter 30 for each of the functions you want loaded.

When all the functions you selected are loaded, the Open Functions panel appears and
you can begin editing. You do not need to wait while the next function you want to edit
is loaded.

Starting an Edit for Another Function

To edit other functions while in the action diagram of a particular function, execute the
following steps:

1. Go to Open Functions. At the Edit Action Diagram panel of the function that you are
currently editing, press F15.

The Open Functions panel appears. From the Open Functions panel you have the
ability to perform any edit functions on open functions, including changing
parameters, accessing diagrams, editing source, displaying usages and references,
editing narrative, and changing the device design.

OPEN FUNCTIONS SYMDL
To edit action diagram, type file and function name and press Enter.

Default file : a
File Function

OR, type cptions, press Enter.

¥=Exit A=REnimate E=STREEU F=Rction diagram

N=Narrative 0O=View options P=Parameters S=Device degign

? File Function Type GEN nane
*Synon reserved pgm data *Notepad EXCINTFUN *N/A
Customer Edit Customer EDTFIL KDATIEFR
Product Edit product EDTFIL MYCOEFR

F3=Exit all open functions FE=Refresh F23=More options

Chapter 10: Modifying Action Diagrams 583

Additional Action Diagram Editor Facilities

At the Open Functions panel, type the file name and the function name in the File
and Function fields. If you are uncertain of the names type ? in the field prompts.
Enter * in the File field to default to the first file in the list. Additionally, you can use
function implementation names(GEN names) if that is more convenient. To open a
function using the implementation name, enter the characters * and thenior |l (*I
or *i) in the File field and then enter the implementation name in the Function field.
Implementation names are not case sensitive.

If the function is not already on the open function list, CA 2E loads the action
diagram of the open function and you can perform any necessary editing.

If it is already on the list, you are returned to the function. You can press F15 at any
time during the edit to view the open functions on the Open Function panel.

Note: Pressing F15 to display the Open Functions panel disrupts the zoom sequence
of any open function. Each zoomed function appears as a separate open function
and you do not automatically return to the calling function on exit. You instead,
return to the Open Function panel from which you must explicitly reselect the
calling function.

Once you perform any editing changes, press F3 to exit, and save the function. You
return to the Open Functions panel.

The function whose action diagram you modified and saved no longer appear on
the Open Functions panel, as it is no longer open.

Only those functions you opened and have not exited remain open and appear on
the Open Functions panel.

Copying from One Function’s Action Diagram to Another Using NOTEPAD

To copy the contents of one action to another, execute the following steps:

1.

At the Edit Action Diagram panel, specify the construct or block of constructs that
you wish to append to the Notepad by entering the appropriate Notepad line
command; NA, NAA, NR, or NRR.

Press F15 to access the Open Functions panel and type F against the function to
which you want to copy.

Access the appropriate user point in the selected function and press Nl to insert the
contents of the Notepad.

Modifying Function Parameters

From the Edit Action Diagram panel press F15 to access the Open Functions panel and
type P against the function whose parameters you wish to modify.

The Edit Function Parameter panel appears.

584 Building Applications

Exiting Options

Switching from Action Diagram Directly to Function Device Design

From the Edit Action Diagram panel, press F15 to access the Open Functions panel and
type S against the function whose device design you want to access.

The device design for the function appears.

Exiting Options

There are several options for exiting a function in an action diagram. They are as
follows:

Exiting a Single Function

At the Edit Action Diagram panel, press F3 to exit a single function. Alternatively, at the
Open Functions panel, type X against an open function.

The Exit Function Definition panel appears.

EXIT FUNCTION DEFINITION SYMDL

Type choices, press Enter.

Change/create function. . . . ¥ Y=Yeg, N=No
Function nams Edit a Name
Lccess path nmame. Retrieval index Name
File name a Name
Function type Edit file

Print functien.) Y=Yeg, N=No

N
Submit generation N Y=Yeg, N=No

F5=Refresh Fl2=Cancel F15=0pen Functicons

The default value for the Change/Create Function option depends on the setting of the
Default Action Diagram Exit Update (YACTUPD) model value; it does not depend on
whether you changed the function unless YACTUPD is set to *CALC. As a result, if you
want to save your changes, be sure this value is Y before you press Enter.

If YACTUPD is set to *CALC, the Change/create function option is set to Y only when a
change to the function’s action diagram or panel design has been detected.

Chapter 10: Modifying Action Diagrams 585

Exiting Options

Exiting ALl Open Functions
At the Open Functions panel, press F3 to exit all open functions.

The Exit Function Definition panel displays for each function on the open function list.
This allows you to process each exit individually.

Exiting a Locked Function

If you are working in Open Functions with a function that is locked or open to another
user of type *PGMR, you can still make changes to the function. However, when you
exit the function to save the definitions you can only apply changes to the locked
function once it is released.

Interactive Generation or Batch Submission

To generate a function use the following instructions:

1. Submit a function to batch generation. At the Exit Function Definition panel, specify
Y on the Submit generation field.

Alternately, at the Edit Functions panel or at the Display All Functions panel, place a
J against the function, or use option 14 from the Edit Model Object List panel.

2. Generate a function interactively. At the Edit Functions panel or the Display All

Functions panel, place a G against the function.

For more information on generation and batch submission, see this module, Chapter 10,
"Generating and Compiling."

586 Building Applications

Understanding Action Diagram User Paints

Understanding Action Diagram User Points

Each function type that includes an Action Diagram contains protected control logic and
a set of user points unique to the function. CA 2E restricts modification of the function’s
logic to these user points. It is essential that the user know the consequences of any
logic that is specified in the user points since it has a direct bearing on the performance
and functionality of the function.

The following information includes examples of the types of logic appropriate for
various user points.

Many of the user points are self-explanatory and the user will know intuitively what
type of processing should be specified. The following information is intended for
illustrative purposes only. This information is meant to serve as a guide to aid the user in
deciding where to insert function logic as well as what type of logic to insert to affect a
certain type of functionality.

For more information and a flowchart for each CA 2E function showing its basic
processing and its user points, see this module, Appendix A, "Function Structure Charts."

Change Object (CHGOBJ)
USER: Processing Before Data Read
USER: Processing if Data Record Not Found

By default, the program context return code field (PGM.*Return code) is set to *DBF
record does not exist. If necessary, insert a move at this point to set return code to
*Normal.

For processing that requires the creation of a DBF record, if the record based on the
input key parameters is not found, you can insert a CRTOBJ function here and use the
input values of the fields passed into this function (from the PAR context) as input
parameters. This is the preferred method for doing this since it involves considerably
fewer 1/0 resources than using a RTVOBIJ to read a record and the executing a CRTOBJ or
CHGOBIJ based on the result of the read.

USER: Processing After Data Read

At this user point, data has been read from the file but not overlaid by data from
incoming parameters. You can use this user point to compare for differences in the
before and after images of records. You can then use this comparison to effect updates
to the file.

Chapter 10: Modifying Action Diagrams 587

Understanding Action Diagram User Points

USER: Processing Before Data Update

At this user point, data has been moved from the incoming parameters to the file fields.
This is often used to set a date/time stamp in the record.

USER: Processing After Data Update
You can use this user point to perform updates to related files. For example, to

increment totals based on the differences computed in the USER: Processing After Data
Read user point.

Create Object (CRTOB))

USER: Processing Before Data Read

USER: Processing Before Data Update
Insert logic here to increment key values of records that you want to add. For example,
to add records to a file with a sequential key: Retrieve the last written key value (for

example, order line number) and increment it by one to obtain the key value of the next
record to be written.

USER: Processing if Data Record Already Exists
By default, the program context field return code (PGM.*Return code) is set to *DBF

record already exists. If necessary, insert a move at this point to set the field value to
*Normal.

USER: Processing if Data Update Error

By default the program context field return code (PGM.*Return code) is set to *DBF
update error. Insert a move at this point to set the field value to *Normal if necessary.

USER: Processing after Data Update

You can use this user point to update any associated file with cumulative totals, or to
automatically create extension records.

588 Building Applications

Understanding Action Diagram User Paints

Delete Object (DLTOB))
USER: Processing Before Data Update

CA 2E performs referential integrity checking on the data input of an application. If you
want to delete data, you must perform your own checking in the action diagram. If you
want to prevent the deletion of a record with references to it, insert a call here to a
RTVOBI function based on the file to be checked, (that is, any file that refers to this file).
Build the RTVOBIJ function over a RSQ access path that is keyed by the foreign key fields.
If a record is found, set the return code to *User QUIT requested; if a record is not
found, set the return code to *Normal. Check the return code; if the return code is
*Normal, quit the function and send an error message if necessary.

To perform a cascading deletion of subordinate file records, insert an EXCEXTFUN
function containing separate RTVOBIJ function calls for each file that potentially contains
records to be deleted. For each RTVOBJ, define restrictor parameters based on the
higher key order of the super ordinate file. This retrieves all possible records to delete.
Insert a DLTOBJ function to delete each record in the USER: Process DBF Record user
point of the RTVOBIJ function.

USER: Processing Before Data Read

Display File (DSPFIL)

USER: Initialize Program
Initialize work fields from passed parameters or from other database file reads with this
user point. Implement security checking and specify an *EXIT PROGRAM action if the

user is not authorized.

The program context scan limit field, PGM.*Scan limit, is set to 500 by default. If you
want to change this value, do so here.

USER: Initialize Subfile Control

Initialize subfile control fields from passed parameters that are not mapped or from
other database file reads.

Chapter 10: Modifying Action Diagrams 589

Understanding Action Diagram User Points

USER: Initialize Subfile Record from DBF Record

Insert logic to execute further record selection processing. Set the program context field
record selected to no, PGM.*Record selected = *NO for records that do not meet the
criteria. This procedural level processing is useful when the majority of the records are
to be selected but you do not want to build, or cannot build, the select/omit criteria into
the access path. If you want all subfile records to be reprocessed after validation, insert
the program context reload subfile field here (PGM.*Reload subfile = Yes).

Note: An action to insert a *QUIT function in this user point inhibits the subfile load but
does not properly condition the roll indicator.

Check for hidden fields in the subfile control as well as the operators on the subfile
fields (particularly CT (contains) for alphanumeric fields) to ensure that proper records
display.

Function fields of type CNT, MAX, MIN, and SUM are not allowed for this function type;
however, you may want to keep running totals of subfile fields. To do this, you can add a
function field to the subfile control of type USR and calculate it at subfile load time. This
function type only loads a single page at a time; therefore, any calculations should be
performed at the single record level or using the cumulative totals of the subfile record.

CALC: Subfile Control Function Fields

Calculations associated with a derived function field are inserted in this user point.

USER: Process Subfile Control (Pre-Confirm)

Insert references to function keys (using the CTL.*CMD key) here if you want to execute
the function key without regard to the validity of detail screen format. You should
implement these calls before confirmation of panel processing. If you want subfile data
records to be processed and validated prior to executing function keys, you should place
the processing in the USER: Process Command Keys user point.

Based on the results of these calls (such as adding a record), you may want to set the
program context reload subfile to yes, (PGM.*Reload subfile = *YES), to refresh the
panel with any changed data.

Implement checks of key processing F13 or other function keys that cause the action
*EXIT PROGRAM to be executed.

CALC: Subfile Record Function Fields

Calculations associated with a derived function field are inserted by CA 2E in this user
point. You can add any other actions at this user point. This user point is executed when
subfile record is loaded or initialized and when it is processed as a changed record. This
means that this user point is useful for activities that need to be performed at both of
these times.

590 Building Applications

Understanding Action Diagram User Paints

USER: Process Subfile Record (Pre-Confirm)
Insert subfile selections (using the RCD.*SFLSEL key) here if you want to execute the
subfile selections without regard to the validity of subfile records. You should
implement these calls before confirmation of panel processing. If you want subfile data
records to be processed and validated prior to executing subfile selections, you should
place the processing in the USER: Process Command Keys user point.

Any validation for other fields on the subfile record should go here.

Same considerations as for the previous USER: Process Subfile Control (Pre-confirm).

USER: Process Subfile Record (Post-Confirm)
This user point is present only if you specify the function option for a post confirm pass.

You can use this user point to implement any processing on the subfile record after
editing and confirmation steps.

USER: Process Subfile Record (Post-Confirm Pass)

Insert logic here to implement processing for each subfile record that has been modified
or flagged for additional processing.

USER: Process Command Keys

This user point executes after all other processing and confirmation steps have
completed. You can insert function key processing at this point or perform any
operations that are related to the panel as a whole.

USER: Exit Program Processing

Insert function key processing with a user-specific return code to execute an *EXIT
PROGRAM (F3 in *CUAENTRY; an action in *CUATEXT). The *EXIT PROGRAM logic is
executed here whenever the F3=Exit function key is pressed or an Exit action is
executed.

Display Record (DSPRCD)

Processing for the DSPRCD2 and DSPRCD3 function types is similar to DSPRCD; they
differ only in the number of panels processed.

USER: Initialize Program

Initialize work fields from passed parameters or from other database file reads.
Implement security checking and specify an *EXIT PROGRAM action if the user is not
authorized.

Chapter 10: Modifying Action Diagrams 591

Understanding Action Diagram User Points

USER: Load Detail Screen from DBF Record

Initialize detail fields from passed parameter fields that are not mapped or from other
database file reads.

USER: Process Key Screen Request

Returns processing to key panel.

CALC: Detail Screen Function Fields

Calculations associated with derived function fields in the detail format appear here.

USER: Validate Detail Screen

Insert references to function keys, using the CTL.*CMD key, here if you want to execute
the function key. You should implement these calls before confirmation of panel
processing. If you want the data record to be processed and validated prior to executing
function keys, you should place the processing in the USER: Process Command Keys user
point.

If you are using some sort of pre-emptive function control or fast path processing, be
sure to check relevant return codes facilitating this processing upon return from any
called functions.

Implement checks of key processing F15 or other function keys that cause the action
*EXIT PROGRAM to be executed.

USER: Perform Confirmed Action

Insert any processing you want to occur after you press Enter.

USER: Process Command Keys

This user point is always executed unless exit processing is requested (F3 in *CUAENTRY;
an action in *CUATEXT). You can insert an *EXIT PROGRAM action at this point if you
want to exit after DBF updates.

USER: Exit Program Processing

Insert function key processing with a user-specific return code to execute an *EXIT
PROGRAM action (F3 in *CUAENTRY; an action in *CUATEXT). The *EXIT PROGRAM logic
is executed here whenever the F3=Exit function key is pressed or an Exit action is
executed.

592 Building Applications

Understanding Action Diagram User Paints

Display Transaction (DSPTRN)
USER: Initialize Program

Initialize work fields from passed parameters or from other database file reads.
Implement security checking, and specify an *EXIT PROGRAM action if the user is not
authorized.

USER: Initialize Subfile Record

Initialize fields in the subfile record format, if necessary.

USER: Validate Header Non-key Fields

Insert references to function keys, using the CTL.*CMD key, here if you want to execute
the function key without regard to the validity of subfile records. You should implement
these calls before confirmation of panel processing. If you want subfile data records to
be processed and validated prior to executing function keys, you should place the
processing in the USER: Process Command Keys user point.

If you are using some sort of pre-emptive function control or fast path processing, be
sure to check relevant return codes facilitating this processing upon return from any
called functions.

Implement checks of key processing; F15 or other function keys that cause the action
*EXIT PROGRAM to be executed.

USER: Validate Header Non-key Relations

Implement subfile control field-to-field validation or other processing dependent upon
prior logic.

USER: Validate Subfile Record Fields

Insert references to subfile selections, using the RCD.*SFLSEL key or equivalent CUA
action here if you want to execute the subfile selections without regard to the validity of
subfile records. You should implement these calls before confirmation of panel
processing. If you want subfile data records to be processed and validated prior to
executing subfile selections, you should place the processing in the USER: Process
Command Keys user point.

If you are using some sort of pre-emptive function control or fast path processing, be
sure to check relevant return codes facilitating this processing upon return from any
called functions.

Implement checks of key processing F15 or other function keys that cause the action
*EXIT PROGRAM to execute.

Chapter 10: Modifying Action Diagrams 593

Understanding Action Diagram User Points

USER: Validate Subfile Record Relations

Implement subfile record field-to-field validation or other processing dependent upon
prior logic.

CALC: Subfile Record Function Fields

Calculations associated with derived and subfile function fields (SUM, MIN, MAX, and
CNT) in the subfile record appear here. You can add any actions at this user point. This
user point is executed when the subfile record is loaded or initialized and when it is
processed as a change record. This means that this user point is useful for activities that
need to be performed at both of these times.

Note: Although subfile function fields operate on subfile record fields, you must place
them in the subfile control format of the device panel.

CALC: Header Function Fields
Calculations associated with derived function fields in the subfile control appear here.
USER: Validate Totals

DSPTRN, like EDTTRN, gives you an extra user point before you press Enter. This allows
you to perform useful validations; in particular, relational checks between a DBF field
and a function field. An example is, a comparison between a customer’s credit limit and
his outstanding balance plus an order total in an Order Entry function. You can then set
the program context defer confirm field to not confirm, PGM.*Defer confirm = *Do not
confirm, if the validation fails and you do not want DBF updates to occur.

USER: Header Update Processing

If you want to perform your own header record DBF updates, you should insert your
own DBF function objects here.

USER: Subfile Record Update Processing

If you want to perform your own detail record DBF updates, you should insert your own
DBF function objects here.

USER: Process Command Keys

This user point is always executed unless exit processing is requested (F3 in *CUAENTRY;
an action in *CUATEXT). You can insert an *EXIT PROGRAM action at this point if you
want to exit after DBF updates.

594 Building Applications

Understanding Action Diagram User Paints

USER: Exit Program Processing

Edit File (EDTFIL)

Insert function key processing with a user-specific return code to execute an *EXIT
PROGRAM action (F3 in *CUAENTRY; an action in *CUATEXT). The *EXIT PROGRAM logic
is executed here whenever the F3=Exit function key is pressed or an Exit action is
executed. To reload the subfile and remain in the function, you can set the program
context continue transaction field to no, PGM.*Continue transaction = *NO, and insert a
QUIT statement here.

USER: Initialize Program

Initialize work fields from passed parameters or from other database file reads.
Implement security checking and specify an EXIT PROGRAM action if the user is not
authorized.

You can set the program context program mode field (PGM.*Program mode) to *ADD or
*CHANGE. You can test this value at any time in order to perform conditional
processing. If you want to change the mode in the action diagram after the panel
displays, you must also set the program context reload subfile field to yes (PGM.*Reload
subfile = *YES).

USER: Initialize Subfile Header

Initialize subfile control fields from passed parameters fields that are not mapped or
from other database file reads.

USER: Initialize Subfile Record (New Record)

This user point is executed if records do not exist (PGM.*Program mode = *ADD).

Chapter 10: Modifying Action Diagrams 595

Understanding Action Diagram User Points

USER: Initialize Subfile Record (Existing Record)

This user point is executed if records exist (PGM.*Program mode = *CHANGE).

Insert logic to perform further record selection processing. Set the program context field
record selected to no (PGM.*Record selected = *NO) for records that do not meet the
criteria. This procedural level processing is useful when the majority of the records are
to be selected but you do not want to build or cannot build the select/omit criteria into
the access path.

Note: An action to insert a QUIT function in this user point may produce unpredictable
results.

Check for hidden fields in the subfile control as well as the operators on the subfile
fields (particularly CT [contains] for alphanumeric fields) to ensure that proper records
display.

Function fields of type CNT, MAX, MIN, and SUM are not allowed for this function type;
however, you may want to keep running totals of subfile fields. To do this, you can add a
function field to the subfile control of type USR and calculate it at subfile load time. This
function type only loads a single page at a time; therefore, any calculations should be
performed at the single record level or by using the cumulative totals of the subfile
record.

CALC: Subfile Control Function Fields

Calculations associated with derived function fields are inserted in this user point.

USER: Validate Subfile Control

Insert references to function keys (using the CTL.*CMD key) here if you want to execute
the function key without regard to the validity of subfile records. You should implement
these calls before confirmation of panel processing. If you want subfile data records to
be processed and validated prior to executing function keys, you should place the
processing in the USER: Process Command Keys user point.

If you are using some sort of pre-emptive function control or fast path processing, be
sure to check relevant return codes facilitating this processing upon return from any
called functions.

Based on the results of these calls (adding a record, for instance), you may want to set
the program context reload subfile to yes (PGM.*Reload subfile = *YES) to refresh the
panel with any changed data.

Implement checks of key processing (F15 or other function keys that cause the action
*EXIT PROGRAM to be executed).

596 Building Applications

Understanding Action Diagram User Paints

USER: Validate Subfile Record Fields

Insert subfile selection calls to other functions using function keys that are specified in
the record context subfile select field (RCD.*SFLSEL) and not in the USER: Process
Command Keys user point described following.

Based upon the results of these calls (for example, zooming to change a record in a
subordinate file), you may want to set the program context reload subfile field to yes,
PGM.*Reload subfile = *YES, to reflect changes in the subfile records.

CALC: Subfile Record Function Fields

Calculations associated with derived function fields in the subfile record appear here.
You can add any other actions at this user point. This user point is executed when the
subfile record is loaded or initialized and when it is processed as a change record. This
means that this user point is useful for activities that need to be performed at both of
these times. You may see use User: Validate Subfile Record Relations user point instead
since it has a similar pattern of execution.

USER: Validate Subfile Record Relations

USER: Create Object

USER: Delete Object

USER: Change Object

Implement field-to-field validation or other processing that is dependent upon prior
logic in this user point. This user point is executed at both the initial subfile load and at
changed record processing. If you have no need of repeating changed record processing,
include the logic in the Initialize Subfile Record user point instead.

If, for the purposes of validation, you do not want to execute the Update Database user
points, you must set on the program context defer confirm field (PGM.*Defer confirm =
*DEFER CONFIRM). Processing returns to the top of the loop that processes the panel.

CA 2E inserts object creation logic at this point if the function option for object creation
is set to yes (Y).

CA 2E inserts object deletion logic at this point if the function option for object deletion
is set to yes (Y).

CA 2E inserts object modification logic at this point if the function option for object
modification is set to yes (Y).

Chapter 10: Modifying Action Diagrams 597

Understanding Action Diagram User Points

USER: Extra Processing After DBF Update
Place additional action diagram logic is this user point if you have additional files that

need to be updated. For instance, if you are adding a record, you may want to include
additional Create Object functions for files that are not automatically linked to this file.

USER: Process Command Keys
This user point is always executed unless exit processing is requested (F3 in *CUAENTRY;

an action in *CUATEXT). You can insert an *EXIT PROGRAM action at this point if you
want to exit after DBF updates.

USER: Exit Program Processing
Insert function key processing with a user-specific return code to execute an *EXIT
PROGRAM action (F3 in *CUAENTRY; an action in *CUATEXT). The *EXIT PROGRAM logic

is executed here whenever the F3=Exit function key is pressed, or an Exit action is
executed.

Edit Record (EDTRCD)

Processing for the EDTRCD2 and EDTRCD3 function types is similar to EDTRCD. They
differ only in the number of panels processed.

USER: Initialize Program
Initialize work fields from passed parameters or from other database file reads.

Implement security checking, and specify an *EXIT PROGRAM action if the user is not
authorized.

USER: Initialize Detail Screen (New Record)

This user point is executed if the record does not exist, PGM.*Program mode = *ADD.
USER: Initialize Detail Screen (Existing Record)

This user point is executed if record to maintain exists, PGM.*Program mode =

*CHANGE. Initializes detail fields from passed parameter fields that are not mapped, or
from other database file reads.

USER: Process Key Screen Request

Returns processing to the key panel.

598 Building Applications

Understanding Action Diagram User Paints

USER: Delete Object

CA 2E inserts object deletion logic at this point if the function option for object deletion
is set to yes (Y).

USER: Validate Detail Screen Fields

Insert references to function keys here using the CTL.*CMD key if you want to execute
the function key without regard to the validity of subfile records. You should implement
these calls before confirmation of panel processing. If you want the data record to be
processed and validated prior to executing function keys, place the processing in the
USER: Process Command Keys user point.

If you are using some sort of preemptive function control or fast path processing, be
sure to check relevant return codes facilitating this processing upon return from any
called functions.

Implement checks of key processing (F15 or other function keys that cause the action
*EXIT PROGRAM to be executed).

You should avoid calling another function from a panel that updates the record you are
maintaining since you are likely to receive the error message, Record Has Been Updated
by Another User, when this function attempts a database update. This is because the
record image on the database has changed since it was last saved.

CALC: Detail Screen Function Fields

Calculations associated with derived function fields in the detail format appear here.

USER: Validate Detail Screen Relations

USER: Create Object

USER: Change Object

Implement field-to-field validation or other processing that is dependent upon prior
logic in this user point.

If, for the purposes of validation, you do not want to execute the update database user
points, you must set on the program context defer confirm field, PGM.*Defer confirm =
*DEFER CONFIRM. Processing returns to the top of the loop, which processes the panel.

CA 2E inserts object creation logic at this point if the function option for object creation
is set to yes (Y).

CA 2E inserts object modification logic at this point if the function option for object
modification is set to yes (Y).

Chapter 10: Modifying Action Diagrams 599

Understanding Action Diagram User Points

USER: Process Command Keys
This user point is always executed unless exit processing is requested (F3 in *CUAENTRY;

an action in *CUATEXT). You can insert an *EXIT PROGRAM action at this point if you
want to exit after DBF updates.

USER: Exit Program Processing
Insert function key processing with a user-specific return code to execute an *EXIT
PROGRAM action (F3 in *CUAENTRY; an action in *CUATEXT). The *EXIT PROGRAM logic

is executed here whenever the F3=Exit function key is pressed, or an Exit action is
executed.

Edit Transaction (EDTTRN)

USER: Initialize Program
Initialize work fields from passed parameters or from other database file reads.

Implement security checking, and specify an *EXIT PROGRAM action if the user is not
authorized.

USER: Initialize Screen for New Transaction

This user point is executed if the header record does not exist, PGM.*Program mode =
*ADD. Initialize fields in the control format, if necessary.

USER: Initialize Screen for Old Transaction

This user point is executed if the header record exists PGM.*Program mode = *CHANGE.
Initialize fields in the control format, if necessary.

USER: Validate Header Key Fields

Executed if the program context field program mode field is Add, PGM.*Program mode
= *ADD.

USER: Validate Header Key Relations

Executed if the program context program mode field is Change, PGM.*Program mode =
*CHANGE.

USER: Load Existing Header

The existing header record format is loaded into the subfile control format.

600 Building Applications

Understanding Action Diagram User Paints

USER: Initialize Subfile Record (Old Record)

Initialize fields in the subfile record format, if necessary. This user point is executed if
the program context program field is Change PGM.*Program mode = *CHANGE.

USER: Initialize Subfile Record (New Record)

Initialize fields in the subfile record format, if necessary. This user point is executed if
the program context program mode field is Add, PGM.*Program mode = *ADD.

USER: Validate Header Non-key Fields

Insert references to function keys (using the CTL.*CMD key) here if you want to execute
the function key without regard to the validity of subfile records. You should implement
these calls before confirmation of panel processing. If you want subfile data records to
be processed and validated prior to executing function keys, you should place the
processing in the USER: Process command keys user point.

If you are using some sort of pre-emptive function control or fast path processing, be
sure to check relevant return codes facilitating this processing upon return from any
called functions.

Implement checks of key processing (F15 or other function keys that cause the action
*EXIT PROGRAM to be executed).

USER: Validate Header Non-key Relations

Implement subfile control field-to-field validation or other processing dependent upon
prior processing logic.

USER: Validate Subfile Record Fields

Insert references to subfile selections here (using the RCD.*SFLSEL key or equivalent
CUA action) if you want to execute the subfile selections without regard to the validity
of subfile records. You should implement these calls before confirmation of panel
processing. If you want subfile data records to be processed and validated prior to
executing subfile selections, you should place the processing in the USER: Process
command keys user point.

If you are using some sort of pre-emptive function control or fast path processing, be
sure to check relevant return codes facilitating this processing upon return from any
called functions.

Implement checks of key processing (F15 or other function keys that cause the action
*EXIT PROGRAM to be executed).

Chapter 10: Modifying Action Diagrams 601

Understanding Action Diagram User Points

USER: Validate Subfile Record Relations

Implement subfile record field-to-field validation or other processing dependent upon
prior logic.

CALC: Subfile Record Function Fields

Calculations associated with derived and subfile function fields (SUM, MIN, MAX, and
CNT) in (or which operate on) the subfile record appear here. You can add any other
actions at this user point. This user point is executed when the subfile record is loaded
or initialized and when it is processed as a new change record. This means that this user
point is useful for activities that need to be performed at both of these times.

Note: Although subfile function fields operate on subfile record fields, you must place
them in the subfile control format of the device panel.

CALC: Header Function Fields
Calculations associated with derived function fields in the subfile control appear here.
USER: Validate Totals

EDTTRN provides you with an extra user point before the DBF update user points. This
user point allows you to perform useful validations, in particular, relational checks
between a DBF field and a function field. For example, a comparison between a
customer’s credit limit and his outstanding balance plus an order total in an Order Entry
function. You can then set the program context defer confirm field to do not confirm
(PGM.*Defer confirm = *Do not confirm) if the validation fails and you do not want DBF
updates to occur.

USER: Create Header DBF Record

CA 2E inserts default object creation logic if the transaction creation function option is
set to yes (Y).

USER: Change Header DBF Record

CA 2E inserts default object modification logic if the change transaction function option
is set to yes (Y). You may substitute for this, which would be useful in the event where
the header format is output only (determined by you) and you want to suppress the
header record. Replace the Change object function at this point with a dummy internal
function that performs no essential function.

USER: Delete Header DBF Record

CA 2E inserts default object deletion logic if the transaction deletion option is set to yes

(v).

602 Building Applications

Understanding Action Diagram User Paints

USER: Create Detail DBF Record

CA 2E inserts default object creation logic if the detail line creation function option is set
to yes (Y).

USER: Change Detail DBF Record

CA 2E inserts default object modification logic if the change transaction function option
is set to yes (Y).

Note: EDTTRN updates all records in the subfile, whether you have changed them or
not.

USER: Delete Detail DBF Record

CA 2E inserts default object deletion logic if the detail line object deletion function
option is set to yes (Y).

USER: Process Detail Record

If you have substituted dummy functions for any of the DBF updates, you want to insert
your own DBF objects at this point.

USER: Process Command Keys

This user point is always executed unless exit processing is requested (F3 in *CUAENTRY;
an action in *CUATEXT). You can insert an *EXIT PROGRAM action at this point if you
want to exit after DBF updates.

USER: Exit Program Processing

Insert function key processing with a user-specific return code to execute an *EXIT
PROGRAM action (F3 in *CUAENTRY; an action in *CUATEXT). The *EXIT PROGRAM logic
will be executed here whenever the F3=Exit function key is pressed, or an Exit action is
executed. To reload the subfile and remain in the function, you can set the program
context continue transaction field to no (PGM.*Continue transaction = *NO) and insert a
QUIT statement here.

Print File (PRTFIL) - Print Object (PRTOBJ)
USER: Initialize Program

Initialize work fields from passed parameter fields, constants or other database file
reads.

Chapter 10: Modifying Action Diagrams 603

Understanding Action Diagram User Points

USER: Record Selection Processing
Implement further logic to restrict records that are to be printed. Set the program
context record selected field to no (PGM.*Record selected = *NO) to prohibit records
from being printed. This should not be done as the primary means of record selection
(use select/omit criteria on the access path instead) but rather to filter out based on

some functional criteria, a small percentage of the records that you want to exclude
from the access path.

USER: Process Top of Page

This format is only available for PRTFIL.

USER: Null Report Processing

This user point is executed if no records exist to print on the report.

USER: On Print of File nnn Key xxx Format
For each field in the key of the access path over which the function is built there is a
format to print the required level headings for the key field (control break). Each format

has user points to total and format fields before, during, or after the format print.

Note: Print object calls are placed immediately before or after the On Print user point.

USER: On Print of Detail Format

CA 2E formats fields from the DB1 file context into the Current (CUR) context of the
format.

USER: On Print of End of Report Format

This format is only available for PRTFIL.

Prompt and Validate Record (PMTRCD)

USER: Initialize Program
Initialize work fields from passed parameters or from other database file reads.

Implement security checking and specify an *EXIT PROGRAM action if the user is not
authorized.

USER: Load Screen

Format the detail panel from parameters, shipped file (PGM or JOB) values, or reads to
other database files.

604 Building Applications

Understanding Action Diagram User Paints

USER: Process Command Keys

Insert calls to other functions using the functions keys that are specified in the control
context function key field (CTL.*CMD key).

If you are using some sort of pre-emptive function control or fast path processing, be
sure to check relevant return codes facilitating this processing upon return from any
called functions.

Implement checks of pre-emptive key processing in a user point (F15 or other function
keys in *CUAENTRY; an action in *CUATEXT) that execute an *EXIT PROGRAM action.

USER: Validate Fields

If you use PMTRCD as a sub-menu, you normally have a function field of type USR on the
panel that allows you to enter valid options. You may also have other USR type fields to
process information that is validated against the database. Implement any validation,
including existence checking, on these fields in this user point.

CALC: Screen Function Fields

Calculations associated with a derived function field are inserted in the subfile record at
this point.

USER: Validate Relations
Check for field dependencies: the value of one field is conditioned on the value of

another field(s); for example, a range where the first number must be less than or equal
to the second.

USER: User Defined Action

If your PMTRCD is a sub-menu, insert calls to appropriate functions based on
user-entered data at this point.

If you are using some sort of pre-emptive function control or fast path processing, be
sure to check relevant return codes facilitating this processing upon return from any
called functions.

USER: Exit Program Processing

Place pre-emptive key processing requiring exit processing (F3 in *CUAENTRY; an action
in *CUATEXT) to execute an *EXIT PROGRAM action with a user-specific return code
since this user point is always executed when exit is requested.

Chapter 10: Modifying Action Diagrams 605

Understanding Action Diagram User Points

Retrieve Object (RTVOBJ)

USER: Initialize Routine

Unless reading a single record for existence checking or retrieving values, much of your
processing is specified from within the calling function itself. In this user point, you
should initialize work fields, counters, and calculation fields.

USER: Processing if Data Record Not Found

The program context return code field is set to *Record Does Not Exist. In many
instances this is the default processing; however, you should set the return code field to
*Normal. Do this with a move statement.

It is good practice to insert a *MOVE ALL built-in function specifying (CON.*BLANKS) if
any data is retrieved by the RTVOBIJ function.

Note: If user logic exists in this user point and the record is not found, then user logic in
USER: Exit processing is ignored.

USER: Process Data Record

USER: Exit Processing

When reading for a single record with a partially restricted key, you must insert a *QUIT
statement in this user point when you have found the requested record. If you are
performing an existence check, you should insert a *QUIT statement once you have
found the record since you do not want to read the entire file. DB1 fields must be
moved to the PAR context to return field values to the calling function. If your fields
match, you can use the *MOVE All statement to execute this. You must explicitly format
other fields with a *MOVE statement. The parameters for which you want to return field
values must be specified as O (Output) or B (Both) parameters.

When reading with a fully restricted key, if the record is found and there is no user logic
in this user point, processing stops. You must have user logic in this user point if you
want to read more than one record.

RTVOBI is often used to direct a batch process. Insert any functions in this user point
that are required to implement your processing: EXCEXTFUN, EXCINTFUN, CHGOBJ,
CRTOBJ, and other RTVOBI.

You may have defined work fields that store data values while the next record is being
processed. This user point is executed when processing has completed. Use the DB1
context carefully in this user point since you have not read another record and
unpredictable results may occur.

Note: User logic in this user point is not executed if user logic exists in user point USER:
Processing if Data Record Not Found and no record is found.

606 Building Applications

Understanding Action Diagram User Paints

Select Record (SELRCD)
USER: Initialize Program

Initialize work fields from passed parameters or from other database file reads.
Implement security checking and specify an *EXIT PROGRAM action if the user is not
authorized.

The program context field *Scan Limit (PGM.*Scan Limit), which is used for establishing
the number of records to read, is set to 500 by default. If you want to change this value,
do so here.

USER: Load Subfile Record from DBF Record

You can insert function field processing at this point, such as field and file descriptions
that are accessed using a RTVOBJ to another file.

USER: Process Subfile Control

Insert references to function keys (using the CTL.*CMD key) here if you want to execute
the function key without regard to the validity of subfile records. You should implement
these calls before confirmation of panel processing. If you want subfile data records to
be processed and validated prior to executing function keys, you should place the
processing in the USER: Process command keys user point.

If you are using some sort of pre-emptive function control or fast path processing, be
sure to check the relevant return codes facilitating this processing upon return from any
called functions.

Based on the results of these calls (adding a record, for instance), you may want to set
the program context reload subfile field to yes (PGM.*Reload subfile = *YES) to refresh
the panel with any changed data.

Implement checks of key processing (F15 or other function keys that cause the *EXIT
PROGRAM action to be executed).

USER: Process Selected Line

The function exits at this point if you have selected a subfile record.

Chapter 10: Modifying Action Diagrams 607

Understanding Function Structure Charts

USER: Process Changed Subfile Record

If relevant, insert subfile selections (using the RCD.*SFLSEL key) here if you want to
execute the subfile selections without regard to the validity of subfile records. You
should implement these calls before confirmation of panel processing. If you want
subfile data records to be processed and validated prior to executing subfile selections,
you should place the processing in the USER: Process Command Keys user point.

Similar considerations as for DSPFIL.

CALC: Screen Function Fields
Calculations associated with a derived function field are inserted in this user point.

USER: Process Command Keys

This user point is always executed unless the function key or action associated with the
*Exit field is requested.

USER: Exit Program Processing

Place pre-emptive key processing requiring exit processing (F3 in *CUAENTRY; an action
in *CUATEXT) to execute an *EXIT PROGRAM action with a user-specific return code
here since this user point is always executed whenever exit processing is requested.

Understanding Function Structure Charts

The CA 2E function structure charts provide you with a visual orientation of the user
points with respect to other processes, and will help you learn the processing offered by
each function type. The function charts appear in Appendix A at the end of this module.

Work your way through each chart as necessary. Evaluate each user point with respect
to the rest of the function until you locate the correct point at which you want to
introduce your processing logic.

For more information and a diagram of each function structure chart, see this module,
in the appendix, "Function Structure Charts."

608 Building Applications

Chapter 11: Copying Functions

This chapter explains how to copy existing functions to create new ones. In general, CA
2E allows you to copy a function to another function of the same type. In addition, a
copy with a change of function type is permitted between certain combinations of
function types. This is called cross-type copying. You can also create new functions by
copying customized template functions.

As an alternative to the process discussed in this chapter, you can create versions of
functions and messages. Some benefits of using versions are:

®m You can test changes on a version of a function or message without interfering with
the functionality of the existing model.

m When you finish testing a new version of a function or message and make it active
in the model, the original model object remains unchanged and can easily be made
active again if needed.

m Only the currently active version of a function or message displays on CA 2E editing
panels. As a result, the panels are not cluttered with inactive versions.

For more information about versions, see Working with Versions of Functions and
Messages, in Generating and Implementing Applications, in the chapter, "Managing
Model Objects."

This section contains the following topics:

Creating a New Function from One That Exists (see page 609)
Cross-Type Copying (see page 611)
Function Templates (see page 613)

Creating a New Function from One That Exists

You can create a new function from an existing one in the following ways:
m From the Edit Function panel
® From a template function

m From the Exit panel of the Action Diagram Editor

Chapter 11: Copying Functions 609

Creating a New Function from One That Exists

From the Edit Functions Panel

To copy a function from the Edit Functions panel:

1.

Type C next to the function you want to copy and press Enter. The Copy Function
panel appears.

Specify the new function by typing the function, file, and access path names of your
new function. If you want to change the function type, use F8.

Press Enter to copy the function.

Note: Because copying between files and access paths is not exact, you should revisit
the action diagram and device design of the copied function.

COPY FUNCTIOH Hy Model
Copy. He
From function : Display Horse
From access path. : Retrieval index
From file ¢ Horse
From type ¢ Display recordil screen)

F3=Exit FB=Change function type

To function . . .

To access path. . . : : : . Retrieval index
To file ! Horse
To type : Display record(l screen)

SHESHERSHE S SHESSHE NN O NN (JPIRII T INIS e Heob e M MM NN HE HEHE HEME HEHE MG R R HE M SHE S HE N MK
Copy with change of access path, file, or function type is not exact.
Revision of the function options, device design, and action diagram *
¥ normally will be required to obtain a working function. *
FRRHCH IR A A AR AR AN HOHINOMHON I I HIEH AR AR AN HHIORIHHON HON K I AR AR IR A FH AN AN

From a Template Function

A template function is a customized function that you can copy to create a new
function. All internally-referenced functions are automatically mapped to the target file

if they are based on the internal *Template file. In other words, the copy facility creates
new referenced functions based on the target file if they do not already exist, selecting
or creating needed access paths. The result is a set of functions that are as close as
possible to a completed version of the functions as if they had been hand-coded.

For more information on template functions, see Function Templates later in this.

610 Building Applications

Cross-Type Copying

From the Exit Panel

To copy a function from the Exit panel of the action diagram editor:

1. Exit the Edit Action Diagram panel of the function you want to copy. The Exit

Function Definition panel appears.

EXIT FUNCTION DEFINITION Hy Hodel

Type choices, press Enter.

F5=Refresh Fl2=Cancel F15=0pen Functions

Changescreate function. . . . W Y=Yes, N=No
Function mame Edit Horse Name
Access path name. Retrieval index
File name Horse
Function twpe Edit file

Print fumpction. N Y=Yes, N=MNo

Return to editing] Y=Yes., N=No

Submit generation N Y=Yes, N=No

2. Specify the function you want to create. Type Y in the Change/Create field. You can
change any underlined field, including Function Name, Access Path Name, and File

Name.

3. Press Enter. This creates your new function.

Cross-Type Copying

For certain function types, you can copy a function of one type to another type of the
same style. To change to another type, press F8 at the Copy Functions panel. When you
press F8, CA 2E automatically changes the function type in the To Type field.

The functions available for crosstype copying include

From/To To/From
DSPRCD1 DSPRCD2
DSPRCD2 DSPRCD3
EXCEXTFUN EXCINTFUN
EDTFIL DSPFIL
EDTTRN DSPTRN

Chapter 11: Copying Functions 611

Cross-Type Copying

From/To To/From
EDTRCD DSPRCD

EDTRCD2 DSPRCD2
EDTRCD3 DSPRCD3
EDTRCD1 EDTRCD2
EDTRCD2 EDTRCD3
PMTRCD DSPRCD1
PMTRCD EDTRCD1
PRTFIL PRTOBJ

PRTFIL RTVOBJ

What Copying Preserves

In copying functions, CA 2E preserves the

m Action diagram (where the user points match)

® Function options

Note: When you copy EXCUSRSRC and EXCUSRPGM functions, only the CA 2E model

information is copied. The user portion of code is not copied and the HLL type defaults
to the current setting of the HLL to Generate (YHLLGEN) model value.

Output/Input Fields

When you cross-type copy the display/edit functions listed previously, CA 2E changes
the output or input capability of fields as follows:

m Edit to display type function all fields are output capable, except key and positioner
fields

m Display to edit type function all fields are input capable, except the key field

What to Revisit

Cross-type function copying results in a message to tell you that device design and
action diagram changes may be required. Review function options, particularly when
copying from display to edit type functions.

612 Building Applications

Function Templates

Device Design

For device functions, the copy process defaults to the device design for the function
type. You can edit the default device design for the newly created function, as
appropriate to your requirements. For example, you may want to make specific function
keys available to the function.

To change the function keys from the device design:

1. Place your cursor on the function key and press Enter. The Edit Command Text
panel appears.

2. Press F5 (Refresh). CA 2E refreshes the function text data with the correct default

function key data from the action diagram.

Note: Depending on the type of copy, the device design may not be preserved.

Action Diagram User Points

The action diagram for the new function may refer to fields that do not exist in the file
to which the function was copied or there may be invalid context references. You can
use the Find Error option from the Action Diagram Services panel to locate such errors.
You can then correct the errors in the action diagram.

Note: You can use the Notepad facility of the Action Diagram Editor to copy sections of
action diagrams between functions.

After revisiting the action diagram and the device design, generate the function.

Function Templates

A function template usually contains customized actions that you want new functions in
your model to contain. Two suggestions for using function templates are:

m Create a work wit’ suite of functions for maintaining reference (REF) files in your
model

m Establish and enforce standards for your organization or department that can
automatically be applied when a new function is created

Chapter 11: Copying Functions 613

Function Templates

Understanding Function Templates

Any standard function based on the *Template file is known as a template function. A
template function can be a primary function or a function internally referenced by a
primary function.

When you copy a template function, CA 2E uses the source function as a template to
create a new function based on a target file you specify. Function names and access
paths are automatically adjusted for the target file.

There is no limit to the complexity of the suite of functions copied. The primary function
must be based on the *Template file, but internally-referenced functions can be based
on the *Template file or they can be based on normal user-defined files.

Run-time messages list new objects created and indicate where user intervention may
be required in the second level text.

Two action diagram features aid the creation of template functions:

m The PR (protected structure) selection option lets you protect blocks that comprise
standard areas of the action diagram you do not want developers to remove or
change

®m You can specify *T for Function file on the Edit Action - Function Name window to
select from among existing template functions.

Note: Function templates facilitate the process of creating new functions or suites of
functions. There is no inheritance; as a result, changing the template has no effect on
functions that were previously created from the template.

614 Building Applications

Function Templates

Creating a Template Function

This process applies both to the primary template function and to any functions the
primary function references that also to serve as template functions.

1.

There are two ways to create a template function:

m Go to the Edit Functions panel for the *Template file and create a new
function.

m Go to the Edit Functions panel for a model file and copy an existing function to
the *Template file. This is best if you already have customized functions that
can serve as templates.

Adjust or create the function as you would any other function:

a. Name the function. When naming a template function you can place *Template
in the name where you want the target file name to appear; for example, Work
with *Template data translates to Work with Customer data for the Customer
file.

b. If the function requires an access path, specify an appropriate one based on the
*Template file.

c. Add standardized actions to the action diagram.

d. Specify parameters for internally-referenced template functions using the
following two fields defined for the *Template file:

m *Template key defn—If this field is a parameter on a referenced function, it is
replaced by the target file’s key fields.

m *Template record defn—If this field is a parameter on a referenced function, it
is replaced by the target file’s non-key fields.

Note: In both cases all fields are used.

Save the template function.

Special Considerations for EDTTRN/DSPTRN Template Functions

1.
2.

Create a span (SPN) access path over the *Template file without formats.

Create the EDTTRN or DSPTRN function over the *Template file and specify the
span access path you just created.

When you copy the EDTTRN/DSPTRN template function to a target file to create a
new function, the copy process selects an existing span access path. If a span access
path does not exist over the target file, a new span access path is created without
formats. You need to add the formats manually.

Chapter 11: Copying Functions 615

Function Templates

Using a Template Function to Create a New Function
The following is an outline of one way to create new functions based on a template
function.

1. Go to the Edit Functions panel for the file on which the new functions are to be
based.

2. Press F21 (Copy a *Template function). The Edit Functions panel displays all
functions based on the *Template file.

3. Type X to select the function to be used as the template and press Enter.
4. The Copy Function panel appears.
Another way to create a new function from a template function is to go to the Edit

Functions panel for the *Template file and type C next to the template function you
want to use.

Note: For the primary function, the validation performed by the Copy Function panel for
copies from the *Template file is identical to that performed for an ordinary file.
Specifically, the access path must exist and the new function must not exist.

You are responsible for verifying and completing the definition of the newly-created
target functions.

Copying Internally-Referenced Template Functions

This section describes how the enhanced copy facility processes functions that are
called from within the primary (top-level) function. For each called function, the copy
process automatically names new functions, selects or creates access paths, and
defaults key and non-key parameters.

This table summarizes the process of copying internally-referenced functions.

Source Function Target Function Result
based on: based on:
*Template file Model file If a matching function based on the target

file exists, it is used. Otherwise, a new
function based on the target file is created.
For each new function, the copy process
names the function, selects or creates an
access path over the target file, and defaults
key and non-key parameters.

*Template file *Template file Normal copy. Use this to update your
template functions.

616 Building Applications

Function Templates

Source Function Target Function Result

based on: based on:

Model file *Template file Normal copy. This is a way to set up your
first template functions if you already have
functions containing customized actions.

Model file Model file Normal copy. Any parameter requirements

of these functions are accommodated by the
copy process, by the parameter defaulting
mechanism, or require developer
intervention.

Creating and Naming Referenced Functions

The copy process first searches the target file for a function with a name matching that
of the template function. Note that if the source function name contains *Template, it is
replaced with the name of the target file before the search for matching names; for
example, ‘Change *Template’ translates to ‘Change Customer’ for the Customer file.

Note: If the DBF functions (CHGOBJ, CRTOBJ and DLTOBJ) attached to the *Template file
contain user-defined processing, you need to change their default names; otherwise,
the default functions on the target file are used. This is true even if the default DBF
functions are not yet been created for the target file.

m |f a matching function is found, it is used if its function type is compatible based on
the following table and if the function is current and not archived.

Template Function Compatible with These Target Function Types
Type

EXCINTFUN All except PRTOBJ

EXCEXTFUN

EXCUSRPGM

CHGOBJ EXCINTFUN / EXCEXTFUN / EXCUSRPGM DSPRCDn /
CRTOBJ EDTRCDn / PMTRCD

DLTOBJ

RTVOBJ EXCINTFUN / EXCEXTFUN / EXCUSRPGM

Chapter 11: Copying Functions 617

Function Templates

Template Function Compatible with These Target Function Types
Type

DSPRCDn EXCINTFUN / EXCEXTFUN / EXCUSRPGM
EDTRCDn DSPRCDn / EDTRCDn / PMTRCD

PMTRCD CHGOBJ / CRTOBJ / DLTOBI

PRTFIL EXCINTFUN / EXCEXTFUN / EXCUSRPGM
PRTOBJ Not compatible with any other type

Notes:

1. EXCINTFUN, EXCEXTFUN, and EXCUSRPGM are compatible with all other types
(except PRTOBJ, which is incompatible with all other types.

2. The internal functions (except RTVOBJ and PRTOBJ) are compatible with the
single record display functions.

3. The subfile function types are fully compatible with each other.

If the type is not compatible, a new function of the same type as the template
function is created over the target file.

m A new function is created if the target function:
m Does not exist
m Isnotcurrent
m Isan archived object
m Isanincompatible function type

The copy process automatically assigns names to new functions. If necessary the
surrogate number of the new object is attached to the function name to make it
unique.

Note: It is important to set the names of *Template functions and avoid changing
them because subsequent copies to the same target file create new functions if the
original functions cannot be found by name.

618 Building Applications

Function Templates

Assigning Access Paths for Referenced Functions

When the copy process is unable to match an existing function based on the target file,
it creates a new function. During this process it often needs to select an appropriate
access path also based on the target file. It does this as follows:

1. It tries to find and use an access path of the same name and type (RTV, RSQ, UPD,
and so on).

2. Ifthere is no match by name, it selects the default access path of the same type.

3. If a default access path of the same type does not exist, it selects the first access
path of the same type alphabetically by name.

4. If unable to find an access path of the same type, it creates a new one. A message

displays when a new access path is created.

Note: Since new access paths default to the primary key, you may need to edit new
access paths prior to source generation.

If a new span (SPN) access path is created, it is created without formats.

For more information about:

m EDTTRN/DSPTRN functions, see Special Considerations for EDTTRN/DSPTRN
Template Functions

m Adding formats to a span access path, see Building Access Paths, in the chapter,
"Adding Access Paths."

Defaulting Parameters for Referenced Functions

Device Designs

The copy process defaults parameters for internally-referenced functions that are based
on the *Template file using the two fields defined for the *Template file:

m *Template key defn—If this field is a parameter on the referenced function, it is
replaced with the target file’s key fields.

m *Template record defn—If this field is a parameter on the referenced function, it is

replaced with the target file’s non-key fields.

Note: In both cases all fields are used. As a result, for the *Template key defn field, if
this is used as a RST parameter for a template function, the new function is a fully
restricted function based on the target file with each key field specified as a restrictor.

You need to edit all device design functions to complete the design.

Chapter 11: Copying Functions 619

Chapter 12: Deleting Functions

This chapter explains how to delete a function, which includes removing references to it
from other objects in the design model.

This section contains the following topics:

Deleting a Function (see page 622)

Chapter 12: Deleting Functions 621

Deleting a Function

Deleting a Function

This topic includes the steps for finding where a function is used and removing all
references to it. If the function you want to delete is not referenced by another
function, go directly to the last step.

To delete a function

1. Find where the function is used. To make the inquiry, starting from the Edit
Database Relations panel:

a. Go to the function for the file. From the Edit Database Relations panel, type F
(next) to the specific file, and press Enter.

The Edit Functions panel displays, listing the functions for that file.

b. Select the function for which you want to find references. Type U (next) to the
specific function and press Enter.

The Display Function References panel appears, listing all the functions that call
the function.

Note: You can also reach the Display Function References panel from the
Display Access Path Functions panel and the Display All Functions panel. You
can also determine which model objects reference the function using the Edit
Model Object List panel or the Display Model Usages (YDSPMDLUSG)
command.

2. Remove the references from the action diagrams. Go into the action diagrams of
the functions that call the function you want to delete and remove the logic that
calls the function.

3. Delete the function. From the Edit Functions panel, type D next to the function you
want to delete and press Enter.

If the function has associated source, a confirm prompt gives you the option of
deleting it along with the function once you press Enter.

622 Building Applications

Deleting a Function

DELETE FUNCTION SYMDL
Function name . : Edit Customer Type . : Edit file
Based on file . : Customer Acpth. : Retrieval index
Delete object from library : BYGEN Mame, *MDLPRF, *GENLIB, =NONE
Delete source from library : SYGEHN Mame, #*MDLPRF, #GEMLIB, #=NONE
Object Source Target
Type HName HLL Text
PGM UUAJEFR RPG Edit Customer Edit file
DSP UURJEFRD Dos Edit Customer Edit file
HLP UUAJEFRH (] Edit Customer Edit file
F3=Exit, no update ENTER=Validate

4. Press Enter again at the confirm prompt. The function and associated source, if any,
is deleted.

For more information on editing functions, see Editing and Maintaining Several
Functions Simultaneously in the chapter "Modifying Action Diagrams."

Chapter 12: Deleting Functions 623

Chapter 13: Generating and Compiling

This chapter tells you how to submit a request to generate and compile a function from
any one of various CA 2E panels. Complete details on the generation process are
contained in Generating and Implementing Applications.

This section contains the following topics:

Requesting Generation and Compilation (see page 625)
Compile Preprocessor (see page 628)

Requesting Generation and Compilation

This topic takes you step by step through requesting generation/compilation from
various CA 2E panels. Once you initiate the request, you can submit it from the Display
Services Menu.

You can request generation/compilation of functions from one of four panels. They are:
m Display Services Menu (one or more functions)

m Edit Functions panel (one or more functions)

m Exit Function Definition panel (one function at a time)

m Edit Model Object List panel (one or more functions)

Chapter 13: Generating and Compiling 625

Requesting Generation and Compilation

The Display Services Menu

To request function generation from the Display Services Menu:

1.
2.

Select the Display all functions option. The Display All Functions panel appears.

Select the functions you want to generate. Type J next to each function you want to
generate, and press Enter.

Exit. Press F3. The Display Services Menu appears.

Submit generations and compilations of all the source members you selected. On
the Display Services Menu either:

m Select the Submit model create request (YSBMMDLCRT) option. Press Enter to
display the source members you selected or press F4 to change parameter
defaults before displaying the list.

m Select the Job list menu option to display the Job List Commands Menu. Select
the YSBMMDLCRT option.

A job list of the source members you requested for generation and compilation
appears on Submit Model Generations and Creates panel.

Review the list before confirming. Press Enter. If the list includes functions you do
not want, you can drop (D) or hold (H) them.

After you press Enter, the panel redisplays with the confirm prompt set to Y for Yes.
Press Enter to confirm the list. CA 2E then submits the generation and compilation
jobs.

As CA 2E processes the jobs, progress messages appear at the bottom of the panel.
Press F5 to refresh the panel for the most current status. Or you can press F3 to exit
to the Display Services Menu.

The Edit Functions Panel

The Edit Functions Panel displays when you enter F next to a file on the Edit Database
Relations panel. To request function generation from the Edit Functions panel:

1.
2.

Request generation. Type J next to the specific functions and press Enter.

Go to the Display Services Menu. Press F17, which takes you to the Display Services
Menu.

Submit the generation request as detailed earlier in the From the Display Services
Menu topic, steps 4-5.

626 Building Applications

Requesting Generation and Compilation

The Exit Function Definition Panel

The

Exit Function Definition panel displays when you exit the Edit Action Diagram panel.

To request generation from the Exit Function Definition panel:

1.

Initiate a generation request. In the Submit Generation field, type Y (Yes).

Y in this field is equivalent to entering J next to the function from the Edit Functions
panel.

Press Enter.

The Edit Functions panel appears, with the message, "Source generation request for
(name of object) accepted." The object name is a name such as UUAEEFR.

Go to the Display Services Menu. Press F17. This takes you to the Display Services
Menu.

Submit the generation request as previously described in the From the Display
Services Menu topic, Steps 4-5.

The Edit Model Object List Panel

You
line.

1.

access the Edit Model Object List panel by entering YEDTMDLLST at a command

Select the model object list containing the functions you want to generate. For
example, enter the model object list name for the List option, or enter ? or *S to
display a list of all model object lists in your model. You can press F17 to display the
Subset Model Objects panel and request that only functions display.

Request generation. Enter selection option 14 for each model object you want
generated. This invokes the Create Job List Entry (YCRTJOBLE) command to add the
select model objects to the job list. You can specify parameters on the command
line. Press Enter.

Press F19 to display a menu of job-list-related commands. Enter 1 to invoke the
Submit Model Create (YSBMMDLCRT) command. See the previous From the Display
Services Menu description, Steps 4-5.

For more information about:

The Model Object List panel, see Edit Model Objects, in the chapter "Managing
Model Objects" in the Generating and Implementing Applications guide.

Working with submitted jobs, see Working from the Display Services Menu, in the
chapter "Generating and Compiling Your Applications" in the Generating and
Implementing Applications guide.

Chapter 13: Generating and Compiling 627

Compile Preprocessor

Compile Preprocessor

The compile preprocessor is a program that can be automatically invoked to run as a
preliminary step on batch compiles.

628 Building Applications

Chapter 14: Documenting Functions

This chapter explains how to document a function. The Document Model Functions
(YDOCMDLFUN) command allows you to print a detailed list of the functions within a
model. You can invoke the command from the Display Services Menu or call it from the i
OS command line. How you set YDOCMDLFUN parameters determines the level of detail
on your listing, including whether narrative text is included.

This section contains the following topics:

Printing a Listing of Your Functions (see page 629)

Printing a Listing of Your Functions

To print a listing of your functions starting from the Display Services Menu:

1. Access the Display Services Menu. At the Edit Database Relations panel, press F17.
The Display Services Menu appears.

Note: You can also access the Display Services Menu by entering the following at a
command line.
YEDTMDL ENTRY(*SERVICES)

1. Go to the Display Documentation Menu. Select the option, Display documentation
menu. The Display Documentation Menu appears.

2. Select functions. Type 5, Document model functions, and press Enter. The
Document Model Functions (YDOCMDLFUN) command panel appears.

3. Set the specific criteria, and press Enter. On this panel you can specify the types of
functions and whether you want to list details as function options, parameters, and
device designs. CA 2E creates a print file containing the listing.

For more information on using the YDOCMDLFUN command, see the Command
Reference Guide.

Chapter 14: Documenting Functions 629

Printing a Listing of Your Functions

Including Narrative Text

Use the parameter PRTTEXT on the YDOCMDLFUN command to include functional or
operational text. Up to ten pages of narrative text can be associated with each CA 2E
object. The narrative text can include:

m Functional text, to explain the purpose of the design object
m Operational text, to explain the function of an object for the end user

Note: In generating help panels, CA 2E uses operational text. If no operational text
exists, CA 2E uses the functional text.

Comparing Two Functions

The Compare Model Objects (YCMPMDLOBJ) command compares the action diagrams
of two functions. This lets you identify any changes made to one version of a function
for retrofitting to another version. You can request a printed report of any mismatches
encountered. You can also use this command to compare two message functions or two
files.

For more information on the Compare Model Objects (YCMPMDLOBJ) command, see
Command Reference Guide.

630 Building Applications

Chapter 15: Tailoring for Performance

This chapter provides guidelines for improving the iSeries performance of applications
that CA 2E generates. Two major aspects covered here are program size and links
between programs.

You can also use the separate CA 2E Performance Expert (PE) option to help you predict
how an application will perform. PE is a CA 2E-generated application intended for CA 2E
development managers and developers.

For more information on PE, see the Performance Expert User Guide.

This section contains the following topics:

Building an Application (see page 632)

Determining Program Size (see page 633)

Fine Tuning (see page 635)

Selecting the Function Type (see page 635)

Specifying the Right Level of Relations Checking (see page 636)
Construct Resolution in Code (see page 636)

Chapter 15: Tailoring for Performance 631

Building an Application

Building an Application

There are two approaches to the structure in building an application:

m Vertical, in which each program calls another at a lower invocation level. Avoid

using this structure, as it is inefficient.

Horizontal, in which a driver program calls whichever program is needed. This
structure affords more control of the programs.

The following example compares both structures.

Horizontal structure

Driver
Program

Program 1 Program 4 Program 3 Program 2

Vertical structure

Program 1

Program 2

Program 3

Program 4

632 Building Applications

Determining Program Size

Using Display File, not Menu Options

On systems where end users are likely to work with the same objects for long periods,
consider using a Display File (DSPFIL) function as the driver program. This program
displays existing objects and prompts the end user for action through subfile selection
(except add which is F9). Using menu options, the application has to open and close files
frequently, which slows performance. A DSPFIL provides a better performing solution.

Note: You can also use an Execute External Function (EXCEXTFUN), Execute User
Program (EXCUSRPGM), or Prompt Record (PMTRCD); whichever is appropriate, as the
driver program.

For more information on functions, see Function Types, Message Types, and Function
Fields, in the chapter "Defining Functions."

Determining Program Size

Determining the right size for programs is relative to your business needs. Some
applications benefit from large, complex programs to simplify navigation for the user.
However, keeping programs small has several advantages including:

m Reusable components (code dedicated to the data it processes)

®m Easier maintenance

m Simpler debugging

® Quicker generation and compilation

m Less code duplication

m More flexibility for grouping processes

Large programs are prone to dead code, used only once or not at all. Breaking processes

into smaller programs allows you to identify such areas of code. You can selectively
invoke them or remove them following completion.

Your panel design requirements should determine how you create the main function.
However, within a given transaction from this program, several functions can be
executed. You can make some of these functions the function type, EXCEXTFUN, to
encapsulate functions or to isolate seldom executed functions.

Chapter 15: Tailoring for Performance 633

Determining Program Size

Optimizing Program Objects

Optimizing program objects can significantly improve performance. Use the i OS
commands, Create COBOL or RPG Program (CRTCBLPGM or CRTRPGPGM) and Change
Program (CHGPGM), as follows:

CRTxxxPGM PGM(1library-name/program-name) +
SRCFILE (library-name/source-file-name) +
GENOPT (*OPTIMIZE)

Note: This is done by altering the parameters on the command in the *Messages file.

CHGPGM PGM(library-name/program-name) +
OPTIMIZE (*YES)

For more information on the create commands and optimization parameters, see
Application System/400 Programming: Control Language Reference.

634 Building Applications

Fine Tuning

Fine Tuning

In tuning the performance of your application, consider these recommendations:

m Restrict the use of subfile control selectors to essential fields, especially on large
files. Drop those that are not required. This applies to SELRCD, DSPFIL, and EDTFIL
functions.

® Minimize the use of virtual fields. That is, use access paths with the least virtuals
possible, since using them involves more processing. Where possible, direct
processing to read one file instead of join logicals over multiple files. If appropriate,
use the Retrieve Object (RTVOBJ) function instead.

m Consider the amount of Refers to referential checking:

m Drop unused relations using the Edit Format Relations panel in the device
design editor

m Set relations to user checking where a field is required but referential checking
is not

m Drop fields from panel formats if the application does not need them, rather than
hiding the fields.

m |f you need to validate many files, consider the use of Share Open Data Path when
an access path is used frequently by several successive programs with fully
restricted key access.

m Create native objects; that is, model value YCRTENV is set to QCMD (iSeries creation
environment).

There are also closely related aspects to tailoring access paths.

For more information on tailoring access paths, see Building Access Paths in the chapter
"Tailoring for Performance."

Selecting the Function Type

Edit Transaction (EDTTRN) and Display Transaction (DSPTRN) function types load the
entire subfile within the limits of any restrictor parameters, if any. On the other hand,
Edit File (EDTFIL) and Display File (DSPFIL) function types load one page at a time. If the
relationships between detail and header records do not require the EDTTRN or DSPTRN
function types, use an EDTFIL or a DSPFIL function type instead.

The PMTRCD function type has less in-built functionality than the Edit Record (EDTRCD)
or Display Record (DSPRCD). If you do not require this functionality, PMTRCD is a better
choice.

Chapter 15: Tailoring for Performance 635

Specifying the Right Level of Relations Checking

Specifying the Right Level of Relations Checking

CA 2E ensures that all device design relations are satisfied. As a rule of thumb, use no
more referential integrity checking than necessary, this includes dropping a relation if it
is not being used. You can drop relations either at the access path, field, or function
level.

For more information on the types of format relations, see Editing Device Designs in the
chapter "Modifying Device Designs."

Action Diagram Editing

For a specific function, you can further adjust relation checking:

m [you specify Optional as the level of relation checking, the relation is enforced if
end users enter a value in the field. This means that you do not need to add your
own validation to the action diagram. Doing so creates unnecessary processing.

m |f you specify No Error as the level of relation checking, CA 2E always checks the
relation but issues no error if the relation fails the check.

Note: The No Error option is useful for distributed applications.

m If you specify User as the level of relation checking, you must add your own
validation for the relation in the action diagram.

Construct Resolution in Code

CA 2E-generated code is typically more consistent than custom-created code. However,
you can achieve similar functional results with differing action diagram constructs. The
constructs result in different source code and object programs, which may have
different performance characteristics. This is potentially true of the way CA 2E generates
internal functions.

CA 2E implements each reference to an internal function as a different set of code,
often inline code. This approach can improve performance. Parameters passed to
internal functions are embedded directly in the code at the point of reference, making
each instance of the internal function unique.

636 Building Applications

Construct Resolution in Code

Using Single Compound Conditions

It is common to repeat a function in a multiple condition CASE structure. For example:

.—CASE

| CTL.Order Header Status is *Open

| internal-function

|-DTL.Order Detail Status is *Unprocessed
| internal-function

| CTL.Order Value is *LT CTL.Credit Limit
| internal-function

Because each internal function is implemented as separate inline code, the code will be
repeated, creating a large source module.

However, instead of repeating the function reference, you can use a single compound
condition. This eliminates the need to repeat the function references and reduces the
number of source lines generated. For example:

.—CASE

|- (c1 OR c2 OR c3)

| |- c1 CTL.Order Header Status is *Open

| |- c2 RCD.Order Detail Status is *Unprocessed
| |- c3 CTL.Order Value *LT CTL.Credit Limit

| internal-function

'— ENDCASE

Chapter 15: Tailoring for Performance 637

Construct Resolution in Code

Selecting the Proper User Points

When you need to add functionality to an action diagram, study the appropriate
function structure chart and information on user points and select the user point to
execute at the correct time for your needs.

Using the incorrect user point in an action diagram can make the repetition of code at
another user point unnecessary.

Assume the following:

® An EDTFIL is required to maintain Customers

m Customers who have a negative balance need to be highlighted when the EDTFIL
presents Customer records to the user

m The WRK context field Highlight Customer is used to indicate that the Customer
record should be highlighted

In order for the appropriate Customer records to be highlighted when the records are
initially loaded, the following processing could be placed in the USER: Initialize subfile
record (existing record) user point:

> USER: Initialize subfile record (existing record)

. . WRK.Highlight Customer = CND.No
. .-CASE
| -RCD.Customer balance is LT 0
| WRK.Highlight Customer = CND.Yes
' -ENDCASE

To further ensure that the records continue to be highlighted after the records are
loaded, the same processing would also need to be inserted in the USER: Validate
subfile record fields user point.

The duplication of logic in both these user points can be avoided by placing the
processing in the USER: Validate subfile record relations user point. This user point is
executed both at function load and later when the records are revalidated.

The selection of this user point reduces the amount of code generated thereby
improving the efficiency of the resulting program.

638 Building Applications

Chapter 16: Creating Wrappers to Reuse
Business Logic

CA 2E lets you easily retrieve user-written business logic, such as validation routines,
and place them into separate functions by using wrappers. These functions can then be
accessed by other CA 2E functions or by external procedures such as CA Plex functions.

The process has two parts:

1. Select the action diagram statements that you want to place into other functions.

2. Select a function type and name. An automated process copies the statements and
places them in a new function with an automatically generated parameter
interface.

This section contains the following topics:

Selecting Action Diagram Statements (see page 640)
Selecting Function Name and Type (see page 642)
Automatic Parameter Interface Generation (see page 643)

Chapter 16: Creating Wrappers to Reuse Business Logic 639

Selecting Action Diagram Statements

Selecting Action Diagram Statements

You can select the action diagram statements from a User Point or from the Notepad.

From a User Point
1. While editing the action diagram of a function, press F5 to view the User Exit Points.

2. Enter W next to the User Point that contains all the statements you want to place in
another function by using a wrapper.

EDIT ACTION DIAGRAM i SBC7OMDL Customer
FIND=> Edit Customer
I(C,1,8)F=I

: USER EXIT POINTS Opt: X,Z=Select V=Summary W=Wrapper
: B USER: Initialize program

USER: Initialize subfile header

USER: Initialize subfile record (existing record)

USER: Initialize subfile record [(new record)

CALC: Subfile control function fields

USER: Validate subfile control

USER: Validate subfile record fields

CALC: Subfile record function fields

: Validate subfile record relations

splay screen
"-ENDWHILE

" -ENDWHILE
..Closedouwn

F3=Prev block F5=User points FB6=Cancel pending moves F23=More options
F7=Find F8=Bookmark F9=Parameters F24=More keys

05/016

3. Goto the section Selecting Function Name and Type.
From the Notepad

In some cases, it may not be
desirable or necessary to use a
wrapper on an entire User Point.
The User Point may contain
statements that you do not want in
the new function. Or perhaps the
final function needs additional
statements that are not required in
the original function.

640 Building Applications

Selecting Action Diagram Statements

You can edit User Point action diagram statements, place the whole User Point in a
wrapper, and then exit the function without saving to preserve the original User Point.
An easier and more flexible approach, however, is using the Action Diagram Editor
Notepad.

Note: Because EXCEXTFUN and EXCINTFUN have no User Points, use Notepad to place
statements from these types of functions in a wrapper.

Use the Notepad commands N, NA, NAA, NI, NR, and NRR to put the required
statements into the Notepad.

1.
2.

Press F18 to view the *Notepad.

Press F5 to select all the statements in the Notepad.

EDIT RCTION DIRGRAM Edit SBC7OMDL #Synon reserved pgm data

FIND=> #Notepad
I(C,I,8)F=Insert construct 1(X,0)F=Insert alternate case
I(A,E,Q,*,+,-,=,=A)F=Insert action IMF=Insert message

> #Notepad
.JURK. Customer Code = RCD.Customer Code
RCD.Customer Code = RCD.Customer Code
PGM. #*Sbmjob override string = JOB.*Function main file mbr

F3=Prev block F5=Wrapper F&=Cancel F23=More Options
F7=Find F8=Bookmark F9=Parameters F24=More keys

05/002

Chapter 16: Creating Wrappers to Reuse Business Logic 641

Selecting Function Name and Type

Selecting Function Name and Type

After selecting the action diagram statements for the wrapper, you must assign a
function name and type.

EDIT ACTION DIAGRAM i SBC7OMDL Customer
FIND=> Edit Customer
1(C,I,8)F=I
I1(A,E,Q,*,+ : USER EXIT POINTS Opt: X,Z=Select VY=Summary W=Wrapper
i _ USER: Initialize program
: _ USER: Initialize subfile header
: _ USER: Initialize subfile record (existing record)

CREATE WRAPPERED FUNCTION

Function file : Customer

Function. . . : My Wrappered Funtion H lm
Function type : I I=EXCINTFUN E=EXCEXTFUN
F3=Exit F12=Cancel

" -ENDWHILE
' -ENDWHILE
...Closedown

F3=Prev block F5=User points F6=Cancel pending moves F23=More options
F7=Find F8=Bookmark F9=Parameters F24=More keys

11/054

The default values that appear in the Create Wrappered Function panel depend on
whether you started the procedure from a User Point or from the Notepad:

From a User Point

The default Function File, which will own the new function, is the same file that
owns the function that contained the User Point. The default Function name is the
first 25 characters of the User Point name.

From the Notepad

The default Function File is ?, therefore you must choose the function name. The
default Function name is blank.

In either case, the default Function type is E for EXCEXTFUN, but you can change it
to | to create an EXCINTFUN.

The final step is to press Enter. An Execute External Function or Execute Internal
Function is created. The selected statements are copied from the Notepad or the User
Point into the newly created function.

642 Building Applications

Automatic Parameter Interface Generation

Automatic Parameter Interface Generation

The function placed in a wrapper creates parameters automatically based on the field
contexts used in the original action diagram statements. Some contexts do not require
conversion; these contexts are LCL, NLL, ARR, PGM, JOB, and CON.

All other contexts are converted and passed into the new function as duplicate
parameters. EXCEXTFUN and EXCINTFUN functions do not have associated screens or
database fields, so the action diagram cannot refer to contexts such as RCD, CTL, DB1,
and DB2.

For each field in an unavailable context, the wrapping process creates an entry on an
array. A new array is created for each function placed in a wrapper. This array is then
defined on the parameter listing for the function passed as RCD.

Each new unavailable context is associated with another parameter entry of the same
array. Each array is passed as a duplicate parameter context, from PR1 to PR9. The first
unavailable context on the action diagram statements is assigned to PR1. The next
context not already assigned to the array is passed as the PR2 parameter context, and
so on. LCL, NLL, PGM, JOB, and CON are never substituted.

The parameter usage for each field on each parameter listing is calculated from how the
CTX field is used in the action diagram statements of the function.

The following illustrations show how the field contexts are converted to the PR1 to PR9
contexts.

Chapter 16: Creating Wrappers to Reuse Business Logic 643

Automatic Parameter Interface Generation

Original Contexts

Edit Customer is a function of the type EDTFIL.

DV4 - [24 x 80] - USER

Edit SBCT7OMDL2 Customer
MY EDIT FILE

> USER: Validate subfile record fields
. This is good code to reuse
.JCTL. Customer Code RCD.Customer Code
.JJRCD. Customer Code CON.R

WRK.Customer Check Flag = CON.Y
PGM.*Sbmjob override string = CON.#blank

In this example, the code in USER: Validate subfile record fields is placed in a wrapper.
This example shows parameter substitution, not application design.

This code populates CTL.Customer Code with RCD.Customer Code, sets RCD.Customer
Code to CON.A, and checks whether CTL.Billing Location is equal to WRK.Delivery
Location. If it is, WRK.Customer Check Flag is set to Y and PGM.*Sbmjob receives the
override string CON.*BLANK.

1. Press F5 to select User Points, and enter W for the relevant one.

2. Choose the function name Update Override String.

The function and the parameter interface are created and contexts are substituted for
any contexts unavailable to the EXCEXTFUN. CTL is the first unavailable context, so an

array is created for this function. The array name consists of the first 22 characters of
the function name plus PAR at the end.

644 Building Applications

Automatic Parameter Interface Generation

The Newly Created Function

DV4 - [24 x 80] - USER
ansfer Appeaiance Commurication Assist Window Help

2|5 B)] e

QPADEVOOOB 2/25/00 15:14:14
ile name. . . : Customer T3 1ST LEVEL *=

Function Function type Access path
_ excusrprg 1 Execute user program Retrieval index
_ MY EDIT FILE Edit file Retrieval index
Select Customer Select record Retrieval index
USER: Validate subfile re Execute external function =NONE

Chapter 16: Creating Wrappers to Reuse Business Logic 645

Automatic Parameter Interface Generation

The Newly Created Array

A new array "USER: Validate subfile PAR" is created. It contains an entry for each field in
the original function in a context that is not available in the newly created EXCEXTFUN.

DV4 - [24 x 80] - USER
ansfer Appearance munication Assist Window Help

2|5 B8 | b 2] 8] 6|F)=]

Op: SBC QPADEVOOOG 2/25/00 15:15:21

Array : USER: Validate subfilePAR
Number of elements : 100 (1 - 9999)

: A (A=Ascending, D=Descending)
i ¥ (Y=Unique, N=non-unique)

Sequence .

RAccess path/Field/Array
Customer Code

Billing Location ID
Delivery Location ID
Customer Check Flag

646 Building Applications

Automatic Parameter Interface Generation

The Parameter Definitions

The array then establishes parameters on the created function. It is passed once for
each context that is being substituted. The Pgm Ctx and Par Ctx columns show the
original and substituted contexts.

=§B - DV4 - [24 x 80] - USER
Tiansfer Appearance Communication Asgist Window Hel

Op: SBC QPRADEVOODG 2/25/00 15:14:39

Function name. . : USER: Validate subfile re Type : Execute external function
Received by file : Customer Acpth: *NONE

Passed Pgm Par

File/*FIELD Access path/Field/Array Seq Ctx Ctx
*Arrays USER: Validate subfilePAR
USER: Validate subfilePAR
USER: Validate subfilePAR

Values
FLD: One parameter per field
RCD: One parameter for all fields
KEY: One parameter for key fields only

Chapter 16: Creating Wrappers to Reuse Business Logic 647

Automatic Parameter Interface Generation

The Control Context

Two fields were used in the CTL context in the original action diagram: Customer Code
and Billing Location ID. Thus both fields are specified as parameters for the first array
entry.

Notice how the usage matches the usage of the fields in the original action diagram. If
the field was used as a target of an operation, the usage defaults to Output. If the field
was used as input to an operation, the usage defaults to Input.

After conversion, the former CTL context is now the PR1 context.

=EB - DV4 - [24 x 80] - USER
Edt Transfer Appearance Communication Assist ‘Wwindow Help

Op: SBC QPADEVOOOG 2/25/00 15:15:57

Function name. . : USER: Validate subfile re Type : Execute external function
Received by file : Customer Array: USER: Validate subfilePAR
Parameter (file) : #*Arrays Passed as: RCD

Field Usage Role Flag error
Customer Code 0
“= I
Delivery Location ID
Customer Check Flag

648 Building Applications

Automatic Parameter Interface Generation

The Record Context

For the RCD context entry, only one field is specified as a parameter. The usage B (Both)
matches the usage of the field in the original action diagram. The field Customer Code
was used as both input and as the target of a *Move statement.

After conversion, the former RCD context is now the PR2 context.

DV4 - [24 x 80] - USER
ansfer Appeaiance

mmunication Asgist Window

Function name.

Received by file :

Parameter (file)

Op: SBC QPADEVODOBE 2/25/00 15:16:23
USER: Validate subfile re Type : Execute external function
Customer Array: USER: Validate subfilePAR
*Arrays Passed as: RCD

Role Flag error

Usage
B

Billing Location
Delivery
Customer Check Flag

Chapter 16: Creating Wrappers to Reuse Business Logic 649

Automatic Parameter Interface Generation

The WRK Context

The WRK context entry matches the usage of the field in the original action diagram
statements.

After conversion, the former WRK context is now the PR3 context.

DV4 - [24 % 80] - USER
anster Appeaance Communication Assit Window Help

B Blo 2|5 S8 | b 20 8] ola)s

Op: SBC QPRADEVOOOG6 2/25/00 15:16:30

Function name. . : USER: Validate subfile re Type : Execute external function
Received by file : Customer Array: USER: Validate subfilePAR
Parameter (file) : #*Arrays Passed as: RCD

Field Usage Role Flag error
Customer Code

Billing Location

Delivery Location ID

Customer Check Flag

650 Building Applications

Automatic Parameter Interface Generation

The New Action Diagram
The new action diagram looks like the old one except for the substituted contexts.

If a reference to an RCD context had appeared first, instead of the CTL context, then the
order of substitution would be different. PR1 would have been RCD.

The newly created function can now be used and called in the usual manner.

DV4 - [24 x 80] - USER
Tiansfer Appearance Communication Asgist Window

SBCTOMDL2 Customer
USER: Validate subfile re

> USER: Validate subfile re

. This is good code to reuse
PR1.Customer Code PR2.Customer Code
PR2.Customer Code CON.R

PR3.Customer Check Flag = CON.Y
PGM.#Sbmjob override string = CON.=#*blank

Chapter 16: Creating Wrappers to Reuse Business Logic 651

Appendix A: Function Structure Charts

This appendix contains examples of the CA 2E function structure charts. The structure
charts provide you with a visual orientation of the user points with respect to other
processes. They will help you learn the processing offered by each function type. Work
your way through each chart as necessary. Evaluate each user point with respect to the
rest of the function until you locate the correct point at which you want to introduce
your processing logic.

Each structure chart is designed to be read from top to bottom and from left to right.
The user points are shown in boxes outlined in bold. A box with a bold outline in its
lower right corner indicates that the chart continues on the next page.

For more information on user points, see Understanding Action Diagram User Points in
the chapter “Modifying Action Diagrams.”

The structure charts are shown on the following pages in alphabetical order by function
type.

Appendix A: Function Structure Charts 653

Change Object

Change Object

> CHANGE OBJECT

not updated

PGM. *Return

code =

*Data update
error

CND.

>USER: ~ _
Processing by DEL. EEEL_ PAR. Read Data Record CASE
Data Read
Data record .
not found OTHERWISE
*
o

‘Record_dues |.1c|t Processing if Data Update Data

- record not found Record

exist
>USER: =USER:
DB1.®ALL = PAR.
Processing after Sonn Processing before Update Data CASE
Data read Data update Recard
Data record *OTHERWISE

PGM. *Return
code = CND.
*Marmal

>USER:
Processing after
Data update

654 Building Applications

Create Object

Create Object

* CREATE
OBIECT
DEI*ALL = > LIGER:
PARSALL Procottlig, b Potition an Data CASE
Dats updatz |
Rcomd,
alrosdy cxist
| | | |
PGA.* Botarn. coxda .
= CND.*Reterd oo o Wit Diata recard CASE
Ilm CHINtR ity

¢ SOTHERWISE
[|
Bk MRo code > USER: POM_*Ratur enda > USER:
= CND."Dsin Froceming if Dts = CHD*Normal Processing aftcr

Appendix A: Function Structure Charts 655

Delete Object

Delete Object

arror

= DELETE OBJECT
FLnzi DB1.*KEY = PAR. Delete Data
Processing before *ALL Record CASE
Data update
Data update *OTHERWISE

PGM. *Return PGM. *Return
code = CHD, code = CHND.
*Data update *Marrmal

error

>LUISER:
Processing after
Data update

656 Building Applications

Display File (Chart 1 of 5)

Display File (Chart 1 of 5)

= OISPLAY FILE

pm:ltl:lt T e » SER: Exit
o > USER: Initisliz TALWAYS progam PEMIT PROGRAM

> Load first subfils PGEM, "Erioad * Conduat pemod
page subffle = END MG comvemating

Appendix A: Function Structure Charts 657

Display File (Chart 2 of 5)

Display File (Chart 2 of 5)

w Load fhrat suhille
PagE
| [[|
= USER: Tnitiat itiem oo THEF Rowd firet DRF CASE
subifile conind record
DBF recond * Lowd poot subfile
h.nﬂ w
I

I I] |

PO YRocand Kove DEF reend USER:Iniialz:
= Helds to mibdile :urhﬂl:muuﬂfhm CASE wn;mm

CHD*YESR record fi | g —

Wi subfile record

658 Building Applications

Display File (Chart 3 of 5)

Display File (Chart 3 of 5)

> Conduct screen
conversation

= REPEAT WHILE

PGM.
*Reload
subfile is
*NO

Display screen

Process
response

CASE

-CTL. *CMD
key is
*Reset

-CTL. *CMD
key is *Help

-CTL. *CMD
key is *MNext
page

..Load next
subfile page ====>

PGM. *Reload - el
...EXIT program subfile = frﬂ;zsesst elp
CND.*YES 4
Closedown ===

> Process panel

Appendix A: Function Structure Charts 659

Display File (Chart 4 of 5)

Display File (Chart 4 of 5)

= Frocom panal
"m:“mi < = QUIT f arrurs CASE CASE }Usn:h;;f
sublile is *YES Do net oonfim
<« = QUIT < == QUIT

660 Building Applications

Display File (Chart 5 of 5)

Display File (Chart 5 of 5)

» Proeces muldils
{Pee-nonfinm)
wCheck poditlon / » CALC: Sobffic *USER: Frocew | | = Check i aubllic Ferad firet changed *TISER: Final
aslact alnee comtrol function | | subdike oot rokoud mbllcrecond | | EEPEAT WHILE mceming
| Beide (Pre-conflrm) | (Pre-canfirm)
CASE CANE
PGh *Rnload
Foaltinning field subfilein *YES
wiiliuae htwa
changed
Cluegal :
mifila woord
=-- QUIT found
PO “Reinad
nibifle -
CNDYES
> CALC: Bubflke = [FSER: Procas wubdfilm Roen] nenct
Tpinin chrmgesi
Firkn, {Pro-oofinm])

Appendix A: Function Structure Charts 661

Display Record (Chart 1 of 5)

Display Record (Chart 1 of 5)

DISPLAY RECORD

...Initialize

=USER: Initialize
program

= Conduct
screen
conversation

= REPEAT WHILE

> Closedown

=USER: Exit
program
procesing

..Initialize key

sCreen

Initialize key
fields fram
pararmeters

=LISER:
Load key screen

= REPEAT WHILE

Transaction
continues

Display key
screen

- Process
response to key
screen

662 Building Applications

Display Record (Chart 2 of 5)

Display Record (Chart 2 of 5)

> Process reapones
o ey panel

CASE

[
I I |

mhﬂp ,mmml < -~ QT if ermom P:dc'mdnﬂ_.ﬂ
| |
Chosedown = == > HEFEAT WHILE
(=)
ottt
| |
Ddsplay curment > Procoas mpoas:
et pane] ‘o el paned
Display Record (Chart 3 of 5)
:-vmnmn,;;l
Check lory Arkde = UBER: Valldatz Resd DB mcond CASE Lo Coeh pen Lmu%ﬁ
ey pamel ey

“C= = (AT iFieernom =« = QUAT if orroes

Appendix A: Function Structure Charts 663

Display Record (Chart 4 of 5)

Display Record (Chart 4 of 5)

> Proohll [i
i il pamal
CASE
DTL KD

LOTL"CMD} DTL."ChIL¥ DTL"CHD
ey i PExit lli'pi:;lﬁ:' Koy i "Hewet oy . "Heip “OTHERWISE

. - FTBOCEN TORDE — Prooows bolp > Prooows dotil
SExl peogram mﬁm Reenet to bey panel reques: moquest el

Cloaedown - - -

664 Building Applications

Display Record (Chart 5 of 5)

Display Record (Chart 5 of 5)

= Provoas dlotwil
it |
Check Ingnut flcldn *E m:l o UTHER: Valdete CASE > [/SER: Parfoem *>USER: Procass
mﬂm [T cotifiemm o it comuund ks
< - GUAT f crroes < - QUIT i cerom. < - UIT ' crromn.
PO *Comifiom in
Dho not eondftem

Appendix A: Function Structure Charts 665

Display Record- 2 Panels (Chart 1

of 7)

Display Record- 2 Panels (Chart 1 of 7)

= DIEPLAY

RECCORT
14 panaile)
> Inifilize > Coodhuct panal > Closedown
PGML¥Pumcd ool |, pygpR- pnisblien > USER: Eixit
= OND. Koy panal pshin REPEAT WHILE Program
[|
o Enliialive kay
pancd REPEAT WHILE
*Tranasdion
coatimcs
I]
Hreth petn key pansl Displey ey pandd "P:::mt

666 Building Applications

Display Record - 2 Panels (Chart 2 of 7)

Display Record - 2 Panels (Chart 2 of 7)

= Procem Temans:
be ey pancl
I
CASE
<h31|."'|!.|i > <hy."'ll-'t> <hq-."'I'H :.l FOTHERWIEE }
= Exil program
PFGM."Pranal cootrol = = Coadhast detadl
. :-\’l]{hh-_rplﬂll < = o CJLAT {F et m-:::m panscd con 3
I
REFEAT WHILE
ML, *Fans]
rouizol 8 *Detal
pancl
= Diplay et = Froomm ey
e panel 0 kel kel

Appendix A: Function Structure Charts 667

Display Record - 2 Panels (Chart 3 of 7)

Display Record - 2 Panels (Chart 3 of 7)

> alldato kay penal
Moo DR meord .
Check fickia > \UHER: Vliduie Rend DB recomd casE fckds o puacd Aol pastt o
ey panel rezond folds TRF moond
< - QUTT i crvoes. < -~ QJUIT i errory
DIER record
ot fhund

668 Building Applications

Display Record - 2 Panels (Chart 4 of 7)

Display Record - 2 Panels (Chart 4 of 7)

= Diinplay eurment
detuils panel

I‘.q'lu“P.m>

DTL‘CMD DTLACMD
- DTL CMD DL “Chily

B, OIS by =
DTL*CMD key

BOMSCHT key =
DTLACMD key

BAMATMD ey =
DAL *CMD by

FOM_ AW kay =
DTL+CHD key

FOMLATMIS kay =
DITL *CHI ey

Display firat dctnila > Detoct fometion Dioplay secomnd > Detect fonction
] = detmiln pancl keys
CASE

Appendix A: Function Structure Charts 669

Display Record - 2 Panels (Chart 5 of 7)

Display Record - 2 Panels (Chart 5 of 7)

= Dietoct fianctlon

PR Y CMT k= PO SCMIF bey = PGM, SOV ey — PO FCMD Ly — PG FCMD Ly —
INDLCMD keoy ZND*CMD koy INL*CMD koy IND*CMD by IND.*CWD key

670 Building Applications

Display Record - 2 Panels (Chart 6 of 7)

Display Record - 2 Panels (Chart 6 of 7)

= Proccm responac
‘o dotgll panal

PUM.*CMD POMLCMD MDD
Pg‘;?:f <Jm-1|-m > <Inar{|"h'm> :?:“mg Iw:r:l“lmt ﬁﬁ'ﬂ:ﬂx *{:'mmsa)

?Sﬂihm
> Sod b0 ot
> Exit program i mml provine detalls
panc]
PG Panal cmtreil = | | AL Punnl oomte] =
Cloncdomn - - -+ NI, ¥ IND kil | | CNT)®IST dirails proc]

< 2 - Pooos Teal « « - Pooons help
s | | SEERE = JL==
I
FGM., " Panal corrtre] :rmrmm
= CHID. Ky pac]
Display Record - 2 Panels (Chart 7 of 7)
2 Ptz dovadl
paral
Ok impt ks h:_"‘;":ﬁ:m:_::l VR Ve CASE 2 USHR: B > VSEE: roem
& - - (LT i oercern « - - JUIT i covnen < - EAIIT i porewn
P *Confiem
Do ok e fiwrs

Appendix A: Function Structure Charts 671

Display Record - 3 Panels (Chart 1 of 8)

Display Record - 3 Panels (Chart 1 of 8)

= DISPLAY
EECQRIY
(3 paeit)
= Coatuct panel
> Initlaliz ComvCTmion > oty
' |
| BEPEAT WHILE
> USER: Initiskzo T
oAt proceming
[|
o Rl by
pancl REPEAT WHILE
*Transsction
(=)
Indtinlize ko ficlds > LISER: Iniialm
fioiin palra inetoe koey pancl Disgley koy pamsd hm#

672 Building Applications

Display Record - 3 Panels (Chart 2 of 8)

Display Record - 3 Panels (Chart 2 of 8)

CARE
[
[[[
MO EEY %MD KEY. 0D
<ﬁrh-m> <Iqrh*lnu> <1.qi.m> *UTHERWIEE
I I I
* Extt poogras L L
I
s> vy | comtem| (BTA | st

= Dl gy oot i Procoe respore
chntesile, prr] 10 detuil puinl

Appendix A: Function Structure Charts 673

Display Record - 3 Panels (Chart 3 of 8)

Display Record - 3 Panels (Chart 3 of 8)

> Valbdabe koy pancl
Mirwe DBF it .
kay panal teonid Feide DEF rocend
- - CHUIT i eevern = - - QLT if cerorw

674 Building Applications

Display Record - 3 Panels (Chart 4 of 8)

Display Record - 3 Panels (Chart 4 of 8)

* Diapley swreont
demdls panel
I
CASE

PCM *Ponrd

{n*Snundd:u.ﬂu

gy first dotells | | = Demet fmeton ?D:n:ﬂn:ﬂm = Dvreex funcian
panal Ly (1) by (3}

FOMACMD key = | | PGM CMD koy = | | PGM. %CMD koy = | | PEM Y CMD by = | | PEM MDY oy =
DTLACMD key DTLHACMD Iy DTLACMD ke DTL*CMD koy DTLFCMD key

Appendix A: Function Structure Charts 675

Display Record - 3 Panels (Chart 5 of 8)

Display Record - 3 Panels (Chart 5 of 8)

= Dwinct Functiot
Kmyw (1)

CASE

& @& @ E EEs

FGMACHD ey = PGMLACMD bey = PGM.*CMD key = PGMACMD by = PGM.ACMD ko = | | PGMACMID iy =
NI, 9K koy NI SCAT oy INT2 WD key IND WD key INTACWD key | | 2ND.CHD ey

676 Building Applications

Display Record - 3 Panels (Chart 6 of 8)

Display Record - 3 Panels (Chart 6 of 8)

: : i: IRD.*CMD :
IRD.*CMD : IRDACMD IADACMD
loey in *Exit key s K”’I <umg> <mn-n-:

IRDACMD
by 10 *Help

PGML*CMD key -
IR0 CMID koy

POM.*CVD ey =
IRD."CMD by

PGM MDD koy -
ARD.*CWD key

FOM.CMD koo =
IR MM key

Appendix A: Function Structure Charts 677

Display Record - 3 Panels

(Chart 7 of 8)

Display Record - 3 Panels (Chart 7 of 8)

> Procem

TR
o ol pm]l

|
PRIMLSCHE
< ,m,“.h> < Wﬂw <wum> <}:‘E’,“fm“"”g “ITHERWISE
. Signal ond of | [Bex o dimpley et ’3"‘““"1"' BGM*CMD DM D
oy e oot d:ﬂmm dotaibs pumel Mw <1nq-n¢l_mt> <hq-n-|-mp
| | |
P *Pann] porrienl - - - Broocen rowet . - - Prioeoss hoty
= CHE, * Koy pumel CASHE CASE mRquont ot
= Ealt progrem
I |
P Pacel
Closedown -- - > '~ i
dm'upm:l "5"""“"”‘ dm-n.pm:l
PDM*Pn-:I:uwnI- POM, *ruui aatirel = _ m‘mdmd-
CND.*3acnd Aeeaie NI *Thin Aesall &Em""f’l‘ NI ™Sacond doesily "P’":;lm
pamel pans] penel sl

678 Building Applications

Display Record - 3 Panels (Chart 8 of 8)

Display Record - 3 Panels (Chart 8 of 8)

P detnil
el
= DALC: Ditnil
Chock inpxt Fslde > UISER: Vakidrin CASE > USER: Pocfimrm > UBER: Frem
"""':“""’ﬁ‘u dotaill puml enafirmed scfion Funotion keys
= - - (AT {f arrocs < - (JUIT i eerorm < - GUAT Ferroy

Appendix A: Function Structure Charts 679

Display Transaction (Chart 1 of 6)

Display Transaction (Chart 1 of 6)

= DISFLAY
TRANSACTION
I
I I |
> Coasdoct program
- Indtlnlirs * Cloncdionn
|
[|] | |
Inttialize: hoader PO, *Fancl conire] = L[SHR- Exit
izl Fwr = WD SHepler = USER: Inltialtey HEFEAT WHILE [
parsmoksy caly Program Frooceing
I
l: *ATWAYS
[|
Inttinlore honder S Condust panel
pancd conremation
I
REFEAT WHILE

> Fromes rospons

680 Building Applications

Display Transaction (Chart 2 of 6)

Display Transaction (Chart 2 of 6)

= Precoms responns

CTL.AMD CTL.ACWD OTHERWIXE
> Exill program. * Fo-imitilin paol * Procees pemaol
|
| | |
Chosedown - - <-- GuIT
> WAty bowder = - -LJUIT {f arman TAER
Chock Soldy = [SEE: Vinlidetn | | Clweok relatiom = [P, Vintidketn PGM.*Fmel coatml
hender Arids beoder reletlems < M,ﬂr > . "Herxiex el details
PGBLHmmd-
< _QUIT forrory < _ . QUIT if-oreern Lomd walsfliq NI, M gnd "w

Appendix A: Function Structure Charts 681

Display Transaction (Chart 3 of 6)

Display Transaction (Chart 3 of 6)

> Load aibfile
Resd header IIBF Fond first detail
rocced for oy TIEF teced far koy EEPEAT WHILE
Diertnil DHF
pocord fiund
nooond Fiekda o > USER: Initintizn mocemd. figtion Writo sulsfilo record Dﬁ‘m%
mobfilo reoord molfile record Tigkds

682 Building Applications

Display Transaction (Chart 4 of 6)

Display Transaction (Chart 4 of 6)

> Procons houksc
unal dolla
Y ntidaries dictily 5 ALE: Honder | | = UBES: Voldoim * Uipdnin i Comh! Kol = TSR Procms
* Sometiom ficidle ‘tnéale proe==8] | CEBFupdes o ke
- - QUIT if emmea £ - - (UTT i mecra = - {JLITT 4 erraes
*oseni | <. ot emn
Cheak Bodn {eacept = TR Watidme Check relrtiom N > [HER: VHktn
pry - - QT i aroors h“tm,mlm_, t ¢ ko) % - - {JUNT HFetron h.ﬂ? ncxs by

Appendix A: Function Structure Charts 683

Display Transaction (Chart 5 of 6)

Display Transaction (Chart 5 of 6)

2 Walidaln driwils
Read firmt
- m“‘ EEPEAT WHILE
Charged.
subile record
found
2« VigHdaiwn uibiile > AL Bubflle Lipataien it Red niint chastged
Tooomd roognd finction ool mabfile rooond
Heldn
el fields = = = (ILINT 1F artirra }ﬂm Chewic rodstiors. % = = {JLIIT {F oyrmiera }%m
fickds milatigms

684 Building Applications

Display Transaction (Chart 6 of 6)

Display Transaction (Chart 6 of 6)

> Lipslat prosaging
Road firet arhfils
CASE = USER: Hesder < - - (UIT i errors REFEAT WHILE
updste proceaing recond
Sukbfilke
<::>
PGM. *Confiem 1o
Do nst eoafim
= LISER: Subfila Heed ot subfile
racond epdata regond
procming

Appendix A: Function Structure Charts 685

Edit File (Chart 1 of 7)

Edit File (Chart 1 of 7)

»EDIT FILE

» Initinlize REFEAT WHILE » Clomdnn
[[
I | | | |
[HT—— _—
somilfiom | (= 3ot progren mode| | - USER: Dnifiskizs "ALWAYE PRI | | Rsamend: | | vy prOGRAM
fo] Propram : - ’
= Lomd # Condonl pannl
CtrTRrRLENT
CASE

686 Building Applications

Edit File (Chart 2 of 7)

Edit File (Chart 2 of 7)

= Load nent subfllc
]
REPEAT WHILE
Sbilie
oy
I I I]
-« Wnllidhrtrs mibfiln Remd mewt DRF
CASE e Wrke subillc eoard]
I
PG Progmm
i *ITTHERWISE
CHANGE
CASE < DEF Recond
>
T
> [ntinlize, wibrfily * Initiakim mbfil
‘mecond (rxisting
n ‘o (o roomed)
—— [:]
Micvn DBF 1o > USER: Inkiales Mirve bkt = (NERL Indeluliae
Ry o & bl mibftle recond o bl o kil rocend newr
{exiacing recoed) recont)

Appendix A: Function Structure Charts 687

Edit File (Chart 3 of 7)

Edit File (Chart 3 of 7)

* Cnoaturt pancd
comvermtion
BEPEAT WHILE
GM "Boload
subdile b *MO
I
T¥inpley pumal POy romposn
I
CASE
|
'EHD
Wumm m“.kn <m, CTL "CMD < SOTHERWISE >
I
PG, "Rolomd
- - » Poorom help
il age > Dy PrEs roquest Proceas pan I

Closalow = = = =

688 Building Applications

Edit File (Chart 4 of 7)

Edit File (Chart 4 of 7)

 Procan paaal
> Vabdat guhfl I <= - GIUNT ¥ awona CASE ’Hw
OB *Racard.
duin chanped In
*YES
Tispiay confin CASE = « QUIT if arvarm
POML*Conflem 1 Feques: mibdie
Vol L .. " Do not aoflem ol if ey
cotrol :
| <- - QUIT
> Upduto DEF fum
mbELs
MM Birknad = QAT Sublfin .
o D VaBdshs el -~ (T if arrern coetod Fmsctiom 2 LISER: VaHdia

Appendix A: Function Structure Charts 689

Edit File (Chart 5 of 7)

Edit File (Chart 5 of 7)

> Validein mibffl
[|

Rond firss chugpod

-] HEFEAT WHILE

skl renerd
Round
> Vilidese wobdile Witz otk Resd bzt
prvesr] - - QT {F aeraes] o v
= FSER: Valideie . = CALC: Subiiie *USER: Validwe
Chnck Firlds mibllln e Cheok celatioms roenes] amrtion: it g i
Tiakis fickin melxtions
L= = JUIT i oo, oL = = UIT if e oL == [T 2 oo

690 Building Applications

Edit File (Chart 6 of 7)

Edit File (Chart 6 of 7)

 Upadetie NBF #iom
sublilc
| ' |
Homl Fint chergeed
e BEFEAT WHILE
Changed
e pesexured
fonnd
[| 1
= Updeic DBF > JSER: Extrn Resd nont clumged
recard Trocceing aiier subfik: recard
DHF opdats
I
CASE
I
PO
nod i "ADD
Cronin chjoot Dot objcot Clungn ohjoot

Appendix A: Function Structure Charts 691

Edit File (Chart 7 of 7)

Edit File (Chart 7 of 7)

= Procees function

>1HEH: Procots
commmnd ks

692 Building Applications

Edit Record (Chart 1 of 5)

Edit Record (Chart 1 of 5)

= EDOIT RECOED
> Inivlalioy progeam }E:M?“ﬂ > Closedouwm
| [
| |
» ot program e > UISHR: Initinkize REPHAT WHILE ?w *EXIT PROGRAM
Program. Prwsing
[
- Indtlalre key
el REFEAT WHILE
camtieecs
PAIM.“Pra ot 2 — Euitiallrn keyy s
mode = g =+ TJEER: Initdalix: —
CROLACHANGE. mads = CNIL " ATHD iy Ky pamed Dimiey by panel * hhn;p.mlm

Appendix A: Function Structure Charts 693

Edit Record (Chart 2 of 5)

Edit Record (Chart 2 of 5)

I
i *"Changr mode oy in “Renct
» » « Froomm vt

= Change betwenn. Toqnen
mnid
Clonadorwn - - - > CASE = Crmidued detmll
yuna] cevrymration
I—I_l
b Wtidate krvy punal] | < == QUITT i oo | | 2 Lol diotni] pasmcl
<ﬂm> < 'm'nmmms> REPEAT WHILE
I I
POM:
| e s
CHND*CHAMIE -
IChesk koery filds = = LT 1 oo 3 [THER: Valiein —
ooy el e ?umr:.m

694 Building Applications

Edit Record (Chart 3 of 5)

Edit Record (Chart 3 of 5)

= Load detall paee]

Read DEF reeard CASE
P ¥Progran
i
deiad] puanel SUUSER: Mnitinlze B Pl i USER: Caleutan = USER: Inftialize
Felda el pumell for by Somatien figkds o] pumed {ercinting

Appendix A: Function Structure Charts 695

Edit Record (Chart 4 of 5)

Edit Record (Chart 4 of 5)

T PTOKOEE D
o dend panel

= Froorss dowll

D'I‘L"IEMD
<::.,";.':=;a-; { w«) <t?"é':.=> <.=,..-m..> =
" . ?Dﬂmﬂﬂl'w‘
|
Closedown = == >
> USER: Frocem | | Sigpal ood of dotadl

696 Building Applications

Edit Record (Chart 5 of 5)

Edit Record (Chart 5 of 5)

> Proneys dotadl
‘pandl
I
ek il = AR Valldate —— > CALC: Valltww | | = [PSER: Vibitun R
el fimsrtiom oinil pemnl
detxil panc] Aelde Fialds inti ot
= == QUIT if e * = = QLT if orom = = QLT if oo
 Upslete DEF = -« QUIIT Feemeny Comml B8 smnﬁ
CARR |
CAME
P, *Canrfitm in
D ot confiem. .
el T L — M Plulrm
mada in SADG *CHLANGE.
< - (AT ICooatn bt Chainph byject

Appendix A: Function Structure Charts 697

Edit Record - 2 Panels (Chart 1 of 9)

Edit Record - 2 Panels (Chart 1 of 9)

b= EDIT RECORT (¢
s}
| | | |
> aklalire Conduat pamel > Choncdown
| I
| REPEAT WHILE
D iy ooy | [t peogem mog | | VB o > TSER Pt *EXIT PROGHAM
= =
|
CASE "1“:‘;““’ REPEAT WHILE
DRF seeoed *Trasmriice
M Praog ot POM.*Progmm Enithulize oy paac] . 5 Process cemanic
C'ND..Q'].;NUE modn = CHEL*ATTY fhun pargEin }uﬁ‘w Denley kry pamel 0 Jary panell

698 Building Applications

Edit Record - 2 Panels (Chart 2 of 9)

Edit Record - 2 Panels (Chart 2 of 9)

> Trocans eepans
0 ke paetd
[
CAEE
KEY i KEY. " M0 "'CH]J
u-;n!ﬁ:u> <u-m.m:z * < COTHERWISE)
* B progran g mdcs mq,umt
Clowedoom - - -2 CASHE
E'Fr-pm PO *Panal coairol =
+*ITHEA'WISE > VBidete ke punclll | € = = (RUIT i covor | | (NI, #First doimils bﬂ“"‘m
el
BN +*Frogmm mw

moda = CND_* AT CND ATHANGE

Appendix A: Function Structure Charts 699

Edit Record - 2 Panels

(Chart 3 of 9)

Edit Record - 2 Panels (Chart 3 of 9)

- Walkdwiz koy panel
Chock ke ficMs - CUIT Ferorm | | = USER: Valldeiz | | < - - UIT I cevom Rewd DBF rocord. CASE
ke pai]
POM.*Progmm
moda s *ADD
> Checak DAF reaned)
b~ Chenike VAP revond
:lmn::tl:t.'lmdr sty
|
CASB
I
; ¢
DEF racond DBF frund sk Pl
ford Dot famd.
Iﬂlib:ﬂml SUSER: Initinlize > [ISER: Enitixlisn “ODERRMES
Racertd aitety detall purel {oew Halda o paned desadl punel (existiog: | | Mecoed net found'
ity raoand) Tecond)

700 Building Applications

Edit Record - 2 Panels (Chart 4 of 9)

Edit Record - 2 Panels (Chart 4 of 9)

REPEAT WHILE

= Proces espeme
o dhetmil s

CAEE
()
Dl First dotwile | | > Thebest finotion Dl aoomnd » Dot finotiss
ke (D) dirals puml ke (3]

Appendix A: Function Structure Charts 701

Edit Record - 2 Panels (Chart 5 of 9)

Edit Record - 2 Panels (Chart 5 of 9)

> Derinet Funwting
Tex (1)

DTLCMD
DITL.*ChID DTL*CAN
) () (s

POM MDD kay =
m*mﬂ

PURL D ko =
mﬁmﬁ

POBL D by =
DTL* mmﬂ;«

PUBL*CMD ke —
mﬂmﬁ

702 Building Applications

Edit Record - 2 Panels (Chart 6 of 9)

Edit Record - 2 Panels (Chart 6 of 9)

3 Dewwd Frtictonn
km (2}

(=) (5F) (B (z=2) (72) (5=

POM.*CMD key = POBL*CMD key = PEAL*CMD key = PEAL*CMD key = POML*CMD koy = FOMLCMD koy =
INDACMD ke INDACMD key INDL AT ey M0 ACWD ey INDL O key IND T ey

Appendix A: Function Structure Charts 703

Edit Record - 2 Panels (Chart 7 of 9)

Edit Record - 2 Panels (Chart 7 of 9)

> Frocos mopomn
01 e]
|
CARE
[[|
PUML MO BTN *CMT FOM A0
et i *Exlt < ""‘f> < <lnh-m> <harh-mh> < "m““'“'>
Pmooas st . Peoomm > Procss datuil
> Exft program > Deloic DBF . T i
Cheocdewn - - - =
PN
okl g tie]
‘“"'*"'”“‘I !.*md_p:“'e
su.pndqﬂq
» USER: Pmocen | | Sezalendefdesil | | Setto dieply next e g
Ky] et panel comvermtion dohdls pand e
PG *Parel eontrd =
BN *Paccl coaivol o c A [I
L e p— m-s;:lm D *Fira Asasl prnel

704 Building Applications

Edit Record - 2 Panels (Chart 8 of 9)

Edit Record - 2 Panels (Chart 8 of 9)

Appendix A: Function Structure Charts 705

Edit Record - 2 Panels (Chart 9 of 9)

Edit Record - 2 Panels (Chart 9 of 9)

= Proces demdl
i
< wa QT if prroey Commit DEF bmhg
CASE
POM *Progrem
ThhY *Frogrsn

- - QU <mdu:'.-m >< e

’“’:EM = =« U F o P ———— [—
Chrk ks ot = QUIT o | | 2 U/SER: Vilisatn | |- - QUIT iFomm | | Chosk ristiom. :mc..:jmﬁlmuﬂ““ "ﬂ:ﬁ“

dirtadl peaed fizlzn el relathors

706 Building Applications

Edit Record - 3 Panels (Chart 1 of 10)

Edit Record - 3 Panels (Chart 1 of 10)

b= EDIT RECORD (3

> Inthalize Coruluut punal > Closadown
REPEAT WEIILE
POM *Poced emetrnd| | gy e | | UBER: Bt - LISER: Exit SEXTT PROGRAM
= CND. Py panel Profam o
CASE "['“;::"“" EEFEAT WHILE
DBF meorwi *Transsntinn
< F o > <-nmmwmg>
PGRL *Progran ftin}ire ey pumncl Proom,
= PGA *Prgam Initialim USER: InkBire i
mnmmz modn = CHDL*ADI o paeaeers. | | ke paned Dilaplay oy pamcl g]

Appendix A: Function Structure Charts 707

Edit Record - 3 Panels (Chart 2 of 10)

Edit Record - 3 Panels (Chart 2 of 10)

KEY.=CHWD KEY.“CMID ky

ko s *Eak I *Chnge: made

= Ching: betwots « « - Prosess retet + + « Procesn help
* Exit program s Tequamt L
Closedown - - - = CASE

POIM Progfilt. PN "Fabal sonirl =
< e . ><-mmmsn> :mmml = QUIT Fumors | | CND*Pitdaal | [= Condustdonl

STHANGE i i prrmversation
I I
PR "Frogen
moda = CHIL*ALD) ks =
T HTILANGE

708 Building Applications

Edit Record - 3 Panels (Chart 3 of 10)

Edit Record - 3 Panels (Chart 3 of 10)

> Vialidabe ko pand
I
Cheick ko floldn = - - QT if arnars :-Uﬂmvm & - - UITT if armecrs Rliaad DEF facwd CAER

CAIE
I
DEF tecard DHEF pesond
DEF recond foumd not fhuad
fommd
Imitintive: pescd >{ISER: fnifimim > USER: Exitinlin *INDEREMAG
Temoed uteady yooed Bekda ol punel (aroe ““-““’”F“d ozl pare frxinting | | "Rexrocd ot Sound
i o) o)

Appendix A: Function Structure Charts 709

Edit Record - 3 Panels (Chart 4 of 10)

Edit Record - 3 Panels (Chart 4 of 10)

Diiplay first dutnils Ltimplary fhivd dotwile | | > Dot unetios
J— sl Tanen (3]

710 Building Applications

Edit Record - 3 Panels (Chart 5 of 10)

Edit Record - 3 Panels (Chart 5 of 10)

=) (B (F) (50 (&= (o=

PGM WD oy = PGM.*CMD key = FOMCMD ey = POM.*OMD by = PG *CMD key = PGML*CMD ey =
DTL*CMD ey DTL.ACWD iy DTLACMD key CTLACMD key DL *CMEr oy DTLCMD ey

Appendix A: Function Structure Charts 711

Edit Record - 3 Panels (Chart 6 of 10)

Edit Record - 3 Panels (Chart 6 of 10)

> Dt Fomctng

koye (2

&= &)) B (=) =) (==

PGM 00D by =
MDD oy

BGA ACME oy =
IND.* MDD kary

712 Building Applications

Edit Record - 3 Panels (Chart 7 of 10)

Edit Record - 3 Panels (Chart 7 of 10)

boy= | |[POMYCMDimy=| | PGM "CMD oy = DM CI by = PEMPCMD kry = | | PGM.*CHD oy =
TAD#CMD Ly ARD, AN ey 0L SN by R0, *CMD by 20D #CAD Ly

Appendix A: Function Structure Charts 713

Edit Record - 3 Panel

s (Chart 8 of 10)

Edit Record - 3 Panels (Chart 8 of 10)

> Frosoll

L e]
‘o chtadl pmd

mum PEMLACHD
FEbCHD PEMLCMD .
I
= Exlt progask =« « Proecems rusce «n Protons help :thDBanH‘ ?m::'m
|
Chitbihw] = = =
AL MY
DHapley confine CAXE Db okt <u=.j|!m mﬁz
St':plnﬁq:'l.uy
» [TRER: P | | Sittnal end of detad PO *Confinn 4 > Set o dlipliy weat [| 7 20 TP M0
Ky e o ool enodizn detutla pared F““f‘"‘;d
POMLF o] comerol
=MD ¥y punal - -

714 Building Applications

Edit Record - 3 Panels (Chart 9 of 10)

Edit Record - 3 Panels (Chart 9 of 10)

= Bot 0o dlaplay et o diapley
shriie parol Jrvicn skotadle puneld
CASE CASE
PEM *Pand AL P
PGA ol PO *Pared
waatrol i "Fin nembri Iy eoct=ed by e is "Third

dotalls purel il e ety parel
PO D] neived = UM SPaned comiral = PORL - POAX “Pym]. ppntre] =
CND " Sornad drtaile (M), " T il Pa] cnctral D" Sovord drtaie

— i N Plext vt el o

Appendix A: Function Structure Charts 715

Edit Record - 3 Panels (Chart 10 of 10)

Edit Record - 3 Panels (Chart 10 of 10)

* Proces detml
pane
I
contfimy Cameuit IHF "
Dieiley CAER = Liiae DBF = - (LT if armam iy :-UEBI.P:ET
P, *Confine b
T ool ondfitrm. CASE
POML"F:
POML“Frogmm ’r
=--qurr < moda is, *ADD > Rt >
. .
}\w::lm = QUIT f eron Corrtn olpect Chomgs oljnct
I
[| [[| |
CATC: Dhateril > 11RER: Yrlidnin
Check fleldn = USER: Yalidme: Choek relatiern - - QUIT {fezmen > i
e e Boid Pl fotion tloe ol
« -~ (UIIT [Fartr - - (IUNT ¥ arvemn

716 Building Applications

Edit Transaction (Chart 1 of 8)

Edit Transaction (Chart 1 of 8)

= FINT
TRANSACTION
I
I I]
- = Condnet progiai
Initmlien Closedoon
= *
[I [
I | I [|
e REPEAT WHILE = [SER; Exht PRI Ratrn codd
Sot progam moda *1JSHR:- britintize = CMD.T WEXIT FRIOWHR AR
Progm Procming B
SALWAYE
[1
Indtintize panc CarveEtion
|
[| |
bt from CAER REFEAT WHILE
‘pErEmOicT

MGAL* Panol aceteol = PGAL*Pamc] nomrirel
> ISER: Thitisic: « =« Lo el izl = THER: Inttialise
mm.u_. Yriark rococds - - = ICNTE.* Honder s n-ndi:r.oid -Uﬂ]:.nL}hdu' Diaplry ool J-Pmmunqn-l

Appendix A: Function Structure Charts 717

Edit Transaction (Chart 2 of 8)

Edit Transaction (Chart 2 of 8)

= Pricill Dot

<~=«m><w»--n><w=--w><

CTLACME ETL M0
=\

> Exif pregram = Fe-inivlalion panc] Elluﬂlt #{hamnge bt Bl 'ul";:n__ e
I I T
|
Climaderwt -- - > =--ourr > Witidmk hosdor CASE
[ern ey}
CASE IPCAL *Ban] PO Faned comirel
<"“""’"‘“’M> <h"‘lhdumlh:ﬂ:
I
* Lo mibils fivam = Betto dlspley
< mod: [y *ART > < *OTHERWIEE > DaF hewder and detetly
Pm.‘]h’lm B ¥ cemitrel = N docall
wodn = e NI *3omdor end === QUIT Hﬂm

718 Building Applications

Edit Transaction (Chart 3 of 8)

Edit Transaction (Chart 3 of 8)

* Vil howterr
fkewyw oaly]
CASE
I | []
:»v.uumm‘ - - QUIT Hesrors - Velldata ke <-- QUIT i crern

* ITSER: Yalking

Chedk ficlds - i » UBER: Vlidke Chock mlationg < i
IUIT i exroen oy QLT if covern [—

Appendix A: Function Structure Charts 719

Edit Transaction (Chart 4 of 8)

Edit Transaction (Chart 4 of 8)

* Ltakel el fhean
DEF
Wiwa ewdee TRF heLowd dciting DG Fill o airwlee of
‘"“‘fm s flaid 1 > USHR: Lowd detad] rocards to nibEl pags with
v for key e punnl existing hoader e Hlamik mererts
AR REPEAT WHILE
e Sulie puge
WTLANGE oot full
[1
Rowd Mot deinil > [MSHR: Inifinliza
DF rovord v kary REFEATWHILE | | sy racoaqury | | "iEke mublic momd
record)
Detxil DBF
secard Round
Maove DEF rovond R o CALE: Sublfly
Tielala b wubfile il oo (i pwond fimobion | | Wil mabfils rmomed m‘“‘ﬁmﬁm
mceond ——" ekin

720 Building Applications

Edit Transaction (Chart 5 of 8)

Edit Transaction (Chart 5 of 8)

> Froces datd]
paned
> Viliclwin dotwrls > CAT: Homlor > [[AER: Valiinin 2 Lipclain p ing > THEHR- Pronms
Funesion falde conald Sodirrand ki
= - - LT f wenots = -~ {UTT f amera = - - JUIIT 4f werom
:-v.m.u::;- € ==QUIT if e
Chnckfils | | <--QuITtremenn | | gy ey | | Cockretaiios | | <--cuimiteron | | ety
flalte it ek

Appendix A: Function Structure Charts 721

Edit Transaction (Chart 6 of 8)

Edit Transaction (Chart 6 of 8)

> Validate detlly
Roed firet sckic
4 REPEAT WHILE
Subllle
mocand feand
= Yadsiz subflie =CALC: Subfic Tipdaiz aubitie Road next sublik:
rasoed o fistechon rocstd roted
Felda
= ITEER: Valldeta
Choek fnlds <o QUIT oy | | UEER: Valldtia Chook relations | | <- - QUIT if cevoew Sk
e mood o

722 Building Applications

Edit Transaction (Chart 7 of 8)

Edit Transaction (Chart 7 of 8)

[+ Upeimie pooezsslng
Update hesder
Diinplay oot CASE. TG reccur Bz, | | == CJUFT-iF eeroen Bend firsl el REPEAT WHILE
poatmnt ¥ —— tocand
I
CASE
Sl
. N Bemier DEF rocond found
M Cerlm e dows WTHERWIEE
| |
Changs cbiect CASE
Upediae datd]
. p—— vectnd fioen bl || | = USER: Procos Faxd net Subllle
.- QT Lo >< wa> povy o] v
Dok
Dalatw aljest Clungn st

Appendix A: Function Structure Charts 723

Edit Transaction (Chart 8 of 8)

Edit Transaction (Chart 8 of 8)

CASE

Detnil DBR
o avist

Demall DEF
record forand

Change sbjoct

Tickic objoct

Cresia ohjoct

724 Building Applications

Prompt and Validate Record (Chart 1 of 2)

Prompt and Validate Record (Chart 1 of 2)

> PROMPT &

> Initinfizn "mﬁ"] * Clomdrem

: I
| REPEAT WHILE | [
= USER: Inftalize > USER: Load FUSHR:Exk | | FOM."Retumoode | | 4pyrry oy A
Frgamn DAL = CHIN "Mernasal
[mitintire pessnl finkda CALL: Pymal
oo, Functinn ks
Dplay pnnl > e s CASE
|
DTL ™MD DTL*CMD DTL.*"CMID
il
> Exdt el - .- Proores reant - - Peoooes hoin = Froooes pancl
: Tquot Toquesl it
Closwimwm === >

Appendix A: Function Structure Charts 725

Prompt and Validate Record (Chart 2 of 2)

Prompt and Validate Record (Chart 2 of 2)

2 Prooss penal
put
Dinplay confimg CASE = UISER: Unr
fud,] dofined astinn
TEM *Cpafirn in
T oot sarfiom.
= Vlichete: punel . .
F— % - - ERIT i creoes, ..
> UEER: Frecis Chesk Mok > UISER: Welkdate Chedk relariony > ICALL: Fanecl 5 LEER: Vatides
o] kmys Ficlde FamniSon fiplde il
o = « {JLIT if eevom L=« (T if cweem,.

726 Building Applications

Print File (Chart 1 of 5)

Print File (Chart 1 of 5)

= PRINT FILE
[
[[|
= Iiitintimn Position oo OBP = Print cod el roport
 Rond newt roosed. | | > Print bop of page 2 Primt: finwt prvges CAER
. > UMER: On print | | Print end offrepoct
= [SER: Inftialirs offcnd o repart il
OgEL St
> UUSER: Procoes
g of g
DEF reood
L e % { *OTHEAWISE)
> [FHER: Frocam N - > LI3EN: Tredels I Null
‘aforn it of S _’;E"m‘"" e piint of Fivs: mu?::n
page Torma pea g foemt
I
> FETCBT malia > PRTOE) enlln > T/SER: Null
T i o St rﬂuﬁ'ﬂ:m afiew print of fimt repuxt procming ’“ﬁm * Prit final tolale
P foomat g futined

Appendix A: Function Structure Charts 727

Print File (Chart 2 of 5)

Print File (Chart 2 of 5)

?Mnmmumil

PO *Roeard
whecied = REPEAT WHILE
CND."NDY
PEM "Hecod
clested in N0
PEML*Rovon] » USER: Bsoan
Rend newct DEE CASE soboced ~ akection
CND.*YES proccming
DAF recond
oot frund
= == QUIT

728 Building Applications

Print File (Chart 3 of 5)

Print File (Chart 3 of 5)

= Frocom repon
body
REPEAT WHILE
DEF roammd
Touml
= TISER: Print il \ - - Rond net recond Dalerming koy level = [25ER: Frimt
mm > e o ¥ mu]:“‘]
| |
= LISER: Process = LISER: Process
Kay xxx headingy Key xzx it
= USER: Procem * FRTORI callx . Frint deball T > FRTOR aallu = USER: Procos
terfire it oo dirtaril < LIEER: On prink wiftier prind of dotedl
‘hatiare pelnt off . o dctadl & foriat e after print of detafl

Appendix A: Function Structure Charts 729

Print File (Chart 4 of 5)

Print File (Chart 4 of 5)

= [ISER: Proosls
Ery zux headings
S » BRCTOR] calla . Print Key anx >PRICE all sfier (| . (757R: Procose
Proca ofir it of kary > JSER: D print peimt of Ky o
h:ﬂa:::dmﬁnﬂiq Ixx Formmt of Koy xoxx format ot IM.;:::LW
= [ISER: Process
Koy xxx hinls
i > PRITDAT ealls 5 PRTCED all afler UISER: Procass
“Uw‘; [S — > TSER; Do print Pﬂml’.l;rﬁml'ﬂﬁ- print of Koy xxx :nupmuflcqr
"ﬁ’m" sk nun e of Ky xcx foemat ormat xxu toemat

730 Building Applications

Print File (Chart 5 of 5)

Print File (Chart 5 of 5)

 Print fine] folele
*FRTOA] il = FRETOR] s
= 1/SER: Procaw) = T7HER: On prind Print Fial fotale X > USER: Pocas
prictof fowl| | e pimt of final of feal scinls St e prict of final e peing of Fimil
‘onls forma: otal, frrremd tocmmt Armemt ‘ocal foermas

Appendix A: Function Structure Charts 731

Print Object (Chart 1 of 5)

Print Object (Chart 1 of 5)

> FRINT CRIBCT
= Il Fetitierh en IHF > R next recard > Friet finst page CASE
]
> [1BEN: Iniialery
PR
- = FRCNOE ealls
oeton i o v | | before pels of o | | > USER: O et
St page format of 2 page Semad
e TUELF mocond “CTHERWISE
g e
= Nudl report
precoming
. = FRTCE] calls -
Prind first pugmn afler priat of fiew > TISER: Frocom]
et e ot of Tt
P st g foems > TISER: Wull >Proomumpet B 3 piy fingd ol

732 Building Applications

Print Object (Chart 2 of 5)

Print Object (Chart 2 of 5)

]

 Rond meect rooood
PEM "Reoom]
selocwd = REFEAT WHILE
CHID. "N
PGAL "R
selected in N
oo salootiom
CHDYYES proceming
DBF roonod
it Tound
= = QUITT

Appendix A: Function Structure Charts 733

Print Object (Chart 3 of 5)

Print Object (Chart 3 of 5)

> Pocas tanoct
hady
|
REPFEAT WHILE
HIF rasond
Found
> UER: Print) . .« o Rl Pt et Do Loy Lirvad * USER: Prind
pegpuieed fowe] * Print dotrila o o= sequined Jevel
hesdings tobla
= UBER: Frooom = USER: Prooos.
Koy xex hombings Koy xxx ik
= USER: Frocem # FETUAT oalla . Prine detail Hna > PRTCIA] calla = USER: Prosca
Pt 3 [bekiory peint il | > LIBER: Cim peit deremas whorpeint of dotwll | | gy et of detall
mﬁfn Rttt of rictil dhemat Rt et

734 Building Applications

Print Object (Chart 4 of 5)

Print Object (Chart 4 of 5)

]

» USER: Proccss > FRTOG] calls . * PRTOM call afier) | . jgpp: Procee
. hefia print of Ky > USER:; Du prink pint of Kay nxx p
pit ¥xx format of Ky xxx fowmar Thermat [

* [ISER: Procom
key xxx tomk
. > FRTOEB] eulls = PRTOAT el miter "
e WL At W - W Tl P
e f i et of Ky aox Foomat Semiae xxx st

Appendix A: Function Structure Charts 735

Print Object (Chart 5 of 5)

Print Object (Chart 5 of 5)

> Primt Minal totaln I

= USER: Proces.

*FRTOAT calla
‘Tdioen printiof final
terimls Focrmmt

=USER: O print
of final totnls

Priest el wotals

> FRTOAT calle
wftor print of final
tertale Formmat

= TISER: Procews
afer print of fnal
ity Rt

736 Building Applications

Retrieve Object

Retrieve Object

> BETRIEVE
OBIECT
R DEL*KEY = Readd fire? D
» USER: Initdlizs PAR.*ALL roeond CAsg
D pecaard
wt found *OTHERAWIEE
> 1TSER; Prooesing if REPEAT WHILE > LISER: Exit
Dwtn recond oot faand Proccing
More reconds
A oy Rz
I |
»USER: Bosd next Drats
Procetding Dite Tesowd
record

Appendix A: Function Structure Charts 737

Select Record (Chart 1 of 4)

Select Record (Chart 1 of 4)

* SELECT
REOOET
|
I l
> Initinkize progemm EEPEAT WHILE
>) i =ALWAYS
> Laad firel subiliie PN, “Reinsd > Conduet pael
Papn mabifile = CNDL*NEY nomeriation
I
REFEAT WHILE
PG iclacd
walbdfile by *ND
[
Display prmal = Frooom reponm

738 Building Applications

Select Record (Chart 2 of 4)

Select Record (Chart 2 of 4)

= Lioad first wublfila
Paix
]
I I
Bead first DBEFP
Pontition on DHF sowoed CARR
DlF record > Lond newt wobfila
found pags
I
REFEAT WHILE
Subfilo page
b mot all
[I I] I]
PGA "Bocond Movve TIRF recmd
«+ . CALC: Panal > 1TSER: Lasd Fond meert DEF
sclecied = Tichde wo sublilc : CASE
NI *VEE " function fizids lruhig:!:‘mmlfrm record

Wi sl reoocd

Appendix A: Function Structure Charts 739

Select Record (Chart 3 of 4)

Select Record (Chart 3 of 4)

b Frocom responic
CASE
CTLACMD
CTLACHD CTL %MD CTL*CMD
ey fn *Ex iy 8 *Meset o) o CITHERWIEE
BOML *Recload
- - . . Frosemn halp - - - Load nest » Prooes pannl

 Eixlt program mmm*mu et bl page foput
Trwiti By il .
paramctzms from e +EXIT PROGRAM
screan flelds proceming

740 Building Applications

Select Record (Chart 4 of 4)

Select Record (Chart 4 of 4)

> L[EEE:- Poomss
mabxfile condml

> USER- PFrrena
onmrmnl keyn

> CALC: Farsl
Firrction Fokda

*OTHERWIEE

= USER: Frotoss
nclocied Hine:

HEXIT PROGRAM

*LIEER: Frocyma
clmnged webdilo

Appendix A: Function Structure Charts 741

Appendix B: How to Create a Deployable
Web Service Using a Multiple-instance

Array

This process explains how an experienced CA 2E Application Developer can use CA 2E
web service support with enhanced array support to make an invocation and retrieve an
order. This process includes the order header and multiple order detail lines.

Important! The coding examples are designed to illustrate enhanced array support and
are not production-ready. For example, the examples do not contain any user-added
error handling.

As an experienced CA 2E Application Developer, you want your result to be a deployable
2E Web Service that uses Enhanced Array Support to return multiple-instances of data
in a single invocation. In this scenario, we use an Order Header and Order Detail file, and
the order has a single order header and multiple detail lines.

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 743

Select Record (Chart 4 of 4)

The following illustration shows how you complete the process:

Create a Deployable Web Service Using a
Multiple-instance Array

Application Developer

Define the files

Define the Order
Details Array

Create an EEF to
Retrieve the Crder
Header and Order

Details

Set the EXCEXTFUN
to 2 module

Generate and

compile the module
Create a Service

Add the module to
the Service
Pragram

Generate and
cornpile the Service
Program

Create a Web
Service Function

)
)
=
)

Deploy the Web
Service Instance

744 Building Applications

Define the Files

Follow these steps:
Define the Files (see page 745)
Define the Order Details Array (see page 747)

Create an Execute External Function (see page 748)

Retrieve the Order Header and Order Details (see page 748)

Generate and compile the module (see page 763)

Create a Service Program (see page 764)

Add the module to the Service Program (see page 765)

1
2
3
4
5. Set the EXCEXTFUN function to a module (see page 762)
6
7
8
9

Generate and compile the Service Program (see page 766)

10. Create a web service function (see page 767)

11. Deploy the Web Service instance (see page 768)

Note: This procedure uses individual *MOVE ARRAY statements. As you become familiar
with the process, the *MOVE ARRAY, *ALL (see page 769) function helps make your
work more efficient.

Back to Top

Define the Files

We assume the following basic file definitions for the process:

Note: The field types are not critical to this scenario, so you can define field type as you
see fit.

Order Header Files

If your screen shows the Order Header File as:

Order header Known by Order Number
Order header Has Customer Name
Order header Has Order Date

Then the Order Header Records look like this example:

Order Number Customer Name Order Date

10001 John Doe 123111

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 745

Define the Files

Order Number Customer Name Order Date

10002 Jane Doe 022811

Order Detail File

If your screen shows the Order Detail File as:

Order detail Owned by FIL Order Header
Order detail Known By FLD Line Number
Order detail Refers to FIL Product
Order detail Has FLD Quantity

Then the Order Detail Records look like this example:

Order Line Product

Number Number Code Quantity
10001 1 BH 101
10001 3 IP5 103
10002 1 BH 201
10002 3 LH 203

Note: Product code refers to the product file. For example, LH refers to Little Hammer
and BH refers to Big Hammer.

Product File
FIL Product Known by FLD Product code
FIL Product Has FLD Product description
FIL Product Has FLD Product price date
FIL Product Has FLD Product price

Product code Product Product Date Product Price
description

BH Big Hammer 20010101 23.45

LH Little Hammer 20101010 18.97

IP5 Ice Pick 20020202 299.00

746 Building Applications

Define the Order Details Array

Back to Top

Define the Order Details Array

We assume the following array definition for the process.
Note: The Element number field should be of type NBR.

Follow these steps:
1. Create an array named Order Details over the *Arrays file.
2. Take option Z to open the EDIT ARRAY DETAILS screen.

3. Define the Order details array with the retrieval index structure of the order detail
file and additionally an Element number field (Type NBR), as follows:

Op: COCSIO1 QPADEVOOOT 1/25/12 15:24:49
EDIT ARRAY DETAILS SBCB8BCMDL
Array ! Order Details
Number of elements : _100 (1 - 9999)
Sequence : A (A=Ascending, D=Descending)

Unique : ¥ (Y=Unique, N=non-unique)

File/xFIELD Access path/Field/Array
Order detail Retrieval index
*xFIELD Element number

4. Press F7 to access the EDIT ARRAY KEY ENTRIES panel and define Element number
as the key to the array.

Op: COCSIO1 QPADEVOOOT 1/25/12 15:27:07
EDIT ARRAY KEY ENTRIES SBC86CMDL
Array : Order Details Sequence : ASCEND
Unique : UNIQUE Number of elements : 100

Key Par Seq

Field Type Length no. Grp No.
Product code A 16 1
_ Order number 5

line number 5
quantity 5
Element number 5

Back to Top

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 747

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

Create an EXCEXTFUN to Retrieve the Order Header and Order

Details

EDIT ACTION DIAG
FIND=>

I(C,I,S)F=Insert
I(A,E,Q,x,+,-,=,=

JRTv ORDER
Load up an
..and cou

LCL.Order
LCL.Count

Retrive

... that

> EEF RTV ORDER

Retrive Order Header:

LOAD ORDER DETAIL ARRAY - Order detail x

Loop through the array:
.=REPEAT WHILE
-LCL.Count LE LCL.Total elements

IRTV ORDER DETAIL - *Arrays x
Use *MOVE ARRAY to populate the multiple-instance array...

IIPRS.Urder Details (LCL.Count).Product code = LCL.Product code

The function EEF RTV ORDER, EXCEXTFUN type, based over the Order Detail file takes an
input parameter of an order number and returns order information as output
parameters as follows:

m The order header is represented by a single-instance output parameter.
m The order detail lines are represented by a multiple-instance output parameter.
This section describes how to define the EXCEXTFUN to include parameter interface and

action diagram business logic, including calls to other functions. After you complete the
steps in this section, your Action Diagram should match these example screens:

RAM Edit SBC8BCMDL Order detail
EEF RTV ORDER
construct I(X,0)F=Insert alternate case

A)F=Insert action IMF=Insert message

HERDER - Order header x
array from the database...

nt the number of total elements loaded:

number = PR1.0rder number
= CON.1

the array element data (for element LCL.COUNT) into LCL:

represents the order details:

748 Building Applications

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

EDIT ACTION DIAGRAM Edit SBCB86CMDL Order detail
FIND=> EEF RTV ORDER

I1(C,I,S)F=Insert construct I(X,0)F=Insert alternate case

I(A,E,Q,*,+,-,=,=A)F=Insert action IMF=Insert message
PR3.0rder Details(LCL.Count).Order number = LCL.Order number
PR3.0rder Details(LCL.Count).line number = LCL.line number
PR3.0rder Details(LCL.Count).quantity = LCL.quantity
Increment the array element number (LCL.COUNT):
fcL.count = LcL.Count + CON.1
"-ENDWHILE

Important! As a CA 2E developer, you need to understand the architectural distinction
between the two mechanisms to manipulate array data, despite the ability to use a
common structural definition:

m Data can exist and be modified in an array by using database functions (Create
Object — CRTOBJ, Delete Object —DLTOBJ, Change Object — CHGOBJ, and Retrieve
Object — RTVOBIJ) based over the *Arrays file. However, this array data cannot be
accessed by the *MOVE ARRAY function.

m Back to TopData can also exist and be modified in a multiple-instance array
parameter (in the PAR context) and in the ARR context by using the *MOVE ARRAY
function. However, that array data cannot be accessed by database functions
(Create Object — CRTOBJ, Delete Object —DLTOBJ, Change Object — CHGOBJ, and
Retrieve Object — RTVOBJ) based over the *Arrays file.

Note: The function EEF RTV ORDER (Order Detail) relies on four other internal functions,
as listed in the following table.

Function Name Function Type Based over file
RTV ORDER HEADER RTVOBJ Order header
RTV ORDER DETAIL RTVOBIJ *Arrays

CRT ORDER DETAIL CRTOBJ *Arrays

LOAD ORDER DETAIL ARRAY RTVOBIJ Order detail
EEF RTV Order EXCEXTFUN Order detail

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 749

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

You need to build the required internal functions and the external function EEF RTV
ORDER (Order detail):

Note: The file the functions is based over is shown in parentheses.

Follow these steps:

1. RTV Order Header (Order Header) (see page 750)

RTV Order Detail (*Arrays) (see page 752)

CRT Order Detail (*Arrays) (see page 753)

2
3
4. Load Order Detail Array (Order detail) (see page 754)
5. EEF RTV Order (Order detail) (see page 757)

Back to Top

Retrieve the Order Header

This section explains how you retrieve information about an order header record, given
an order number.

Follow these steps:

1. Define the RTV ORDER HEADER: Parameter interface as follows:

Op: COCSIE1 QPADEVOOOY 1/25/12 15:12:49
EDIT FUNCTION PARAMETERS SBC86CMDL
Function name. . : RTV ORDER HEARDER Type : Retrieve object
Received by file : Order header Acpth: Retrieval index

Passed Pgm
File/xFIELD Access path/Field/Array Seq Ctx
Order header Retrieval index CD

750 Building Applications

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

2. Define the function parameter details as follows:

Op: COCSIO1 QPADEVROOT 1/25/12 15:13:04
EDIT FUNCTION PARAMETER DETAILS SBC8BCMDL

Function name. . : RTV ORDER HEADER Type : Retrieve object
Received by file : Order header Acpth: Retrieval index
Parameter [(file) : Order header Passed as: RCD

Field

Order number
Customer name
Order date

3. Configure an action diagram: RTV ORDER HEADER as follows:

This example shows User Points that are not empty.

EDIT ACTION DIAGRAM SBC86CMDL Order header

FIND=> RTYV ORDER HEADER
I1(C,I,S)F=Insert construct I(X,0)F=Insert alternate case
I1(A,E,Q,*,+,-,=,=A)F=Insert action IMF=Insert message

> USER: Process Data record

JJpAr = DB1 By name

4. Save and exit the function.

Back to Top

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 751

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

RTV Order Detail (*Arrays)

This section describes how you retrieve the data for a single element in the Order
Details array. You need to configure the RTV ORDER DETAIL to retrieve the data for a
single element in the Order Details array.

Follow these steps:

1. Configure the RTV ORDER DETAIL: Parameter interface as follows:

Op: COCSIO1 QPADEVOROT 1/25/12 15:13:49
EDIT FUNCTION PARAMETERS SBC8BCMDL
Function name. . : RTV ORDER DETAIL Type : Retrieve object
Received by file : xArrays Array: Order Details

Passed Pgm Par
File/xFIELD Access path/Field/Array Seq Ctx Ctx A

XArrays Order Details CD

2. Define the parameter details as follows:

Op: COCSID1 QPADEVRDOY 1/25/12 15:58:34
EDIT FUNCTION PARAMETER DETAILS SBC86CMDL
Function name. . : RTV ORDER DETAIL Type : Retrieve object
Received by file : xArrays Array: Order Details
Parameter (file) : xArrays Passed as: RCD

Field

Product code
Order number
line number
quantity
Element number

3. Configure the RTV ORDER DETAIL: Action Diagram as follows:

EDIT ACTION DIAGRAM Edit SBC86CMDL xArrays
FIND=> RTV ORDER DETAIL
I(C,I,S)F=Insert construct I(X,0)F=Insert alternate case

I(A,E,Q,x,+,-,=,=A)F=Insert action IMF=Insert message

> USER: Process Data record

.JPArR = DB1 By name

752 Building Applications

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

4. Save and exit the function.

Back to Top

CRT Order Detail (*Arrays)

This section describes how you configure the CRT ORDER DETAIL to populate the data
for a single element in the Order Details array.

Follow these steps:

1. Configure the CRT ORDER DETAIL: Parameter interface as follows:

Op: COCSIO1 QPADEVOOOT 1725712 15:14:49
EDIT FUNCTION PARAMETERS SBC86CMDL
Function name. . : CRT ORDER DETAIL Type : Create object
Received by file : xArrays Array: Order Details

Passed Pgm Par
File/*FIELD Access path/Field/Array Seq Ctx Ctx A

XArrays Order Details CD

2. Define the parameter details as follows:

Op: COCSIO1 QPADEVOOOT 1/25/712 15:15:04
EDIT FUNCTION PARAMETER DETAILS SBC86CMDL
Function name. . : CRT ORDER DETAIL Type : Create object
Received by file : *Arrays Array: Order Details
Parameter (file) : *Arrays Passed as: RCD

Field Usage Role
Product code I

Order number
line number
quantity
ELEMENT NUMBER

Note: The CRT ORDER DETAIL contains no user-added processing in the action
diagram.

3. Save and exit the function.

Back to Top

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 753

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

Load Order Detail Array (Order detail)

This section explains how to define a function to populate the Order Detail array. The
processing runs through the database to find all order detail lines for a given order
number. Each detail line is added as a single element in the Order Details array.

Follow these steps:

1. Create a function called LOAD ORDER DETAIL ARRAY, and configure the parameter
interface as follows:

Note: Define the field Total elements as type NBR.

Op: COCsIOol QPADEVOOO7 1/25/712 15:15:21
EDIT FUNCTION PARAMETERS SBC8BCMDL
Function name. . : LOAD ORDER DETAIL ARRAY Type : Retrieve object
Received by file : Order detail Acpth: Retrieval index

Passed Pgm Par
File/*FIELD Access path/Field/Array Ctx Ctx A
Order detail Retrieval index
Total elements

2. Define the parameter details as follows:

Op: COCSIO1 QPADEVDOOT 1/25/12 15:15:31
EDIT FUNCTION PARAMETER DETAILS SBC8BCMDL
Function name. . : LOAD ORDER DETAIL ARRAY Type : Retrieve object
Received by file : Order detail Acpth: Retrieval index
Parameter (file) : Order detail Passed as: KEY

Field Usage Role
Order number I RST
line number I POS

Op: COCSIO1 QPADEVDOO?T 1/25/12 15:15:40
EDIT FUNCTION PARAMETER DETAILS SBC86CMDL
Function name. . : LOAD ORDER DETAIL ARRAY Type : Retrieve object
Received by file : Order detail Acpth: Total elements
Parameter (file) : xFIELD Passed as: FLD

? Field Usage Role
Total elements 0 MAP

754 Building Applications

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

3. Configure a LOAD ORDER DETAIL ARRAY: Action Diagram as follows:

EDIT ACTION DIAGRAM SBCB86CMDL Order detail
FIND=> LOAD ORDER DETAIL ARRAY

I(C,I,S)F=Insert construct I(X,0)F=Insert alternate case
I(A,E,Q,x,+,-,=,=A)F=Insert action IMF=Insert message

> USER: Initialize routine

.ILCL.ELEMENT NUMBER = CON.xZERO

SBCB8E6CMDL Order detail
LOAD ORDER DETAIL ARRAY

I(X,0)F=Insert alternate case

EDIT ACTION DIAGRAM
FIND=>

I(C,I,8)F=Insert construct
I(A,E,Q,%,+,-,=,=A)F=Insert action IMF=Insert message

> USER: Process Data record

.JLCL.ELEMENT NUMBER = LCL.ELEMENT NUMBER + CON.1
CRT ORDER DETAIL - x*Arrays x

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 755

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

4. Call tothe CRT ORDER DETAIL as follows:

EDIT ACTION DIAGRAM Edit SBC86CMDL Order detail
FIND=> LOAD ORDER DETAIL
I1(C,I,S)F=Insert construct I(X,0)F=Insert alternate case

I(A,E,Q,x,+,-,=,=A)F=Insert action IMF=Insert message

EDIT ACTION - FUNCTION DETAILS
Function file : *Arrays
Function. . . : CRT ORDER DETARIL

I0OB Parameter x Object Name
I Product code Product code
Order number Order number
line number line number

quantity quantity
ELEMENT NUMBER ELEMENT NUMBER

EDIT ACTION DIAGRAM Edit SBC86CMDL Order detail
FIND=> LOAD ORDER DETAIL ARRAY
I(C,I,S)F=Insert construct I(X,0)F=Insert alternate case
I(A,E,Q,*,+,-,=,=A)F=Insert action IMF=Insert message

> USER: Exit processing

.IPHR.Total elements = LCL.ELEMENT NUMBER

5. Save and exit the function.

Back to Top

756 Building Applications

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

EEF RTV Order (Order detail)

This section describes how you define the external function EEF RTV Order (Order detail)
including the parameter interface and action diagram business logic. The EEF RTV Order
(Order detail) retrieves information about an order. Given an input of an order number,
the function retrieves information about the order header, and all of the order detail
lines. The order detail lines are represented using a multiple-instance array parameter.

The key concept is to populate the multiple-instance array parameter (PR3) with order
detail lines from the database. Typically, you can obtain database information using a
function of type RTVOBJ. However, the RTVOBJ cannot directly access the (PR3)
parameters of the EEF. A multiple-instance array parameter can only be defined on
functions of Execute External Function and Execute User Program.

A RTVOBI call might be placed in a loop to retrieve one order detail line at a time into
the, LCL context for example, and then the information could be moved from the LCL
context to an element of the multiple-instance array (PR3) on the EEF. However,
multiple calls to a RTVOBJ based over a database access path is undesirable from a
performance point of view. Moreover, if the order detail lines do not exist with some
contiguous key or positioned, additional code will have to ensure that each order detail
line is retrieved.

We address this issue as follows:

From the AD of the EEF call a RTVOBIJ, named LOAD ORDER DETAIL ARRAY, based over a
database access path (Order detail) one time, and for each order detail record, create an
element in an array.

Note: The array has the same structure as the order detail record, but has an additional
key field of Element number.

Once the Array is created, a loop in the EEF can step through the array and call a
RTVOBJ, named RTV ORDER DETAIL, based over the Order Detailsarray to recall one
element at a time to the LCL context.

The data in the LCL context that represents a single order detail record can then be
populated into multiple-instance array parameter (PR3) of the EEF that represents the
order detail lines. This move from the single-instance LCL context to a multiple-instance
context can be achieved with the *MOVE ARRAY function.

This approach has the benefit that the processing is faster than multiple RTVOB)J
(database) calls and the looping through the array in memory overcomes any gaps
between order detail line numbers.

The EXCEXTFUN function type can be deployed as a *MODULE, which allows it to be
bundled into Service Program and deployed as a web service. Thus a single invocation of
the web service can retrieve all the information regarding the order header and all order
detail lines.

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 757

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

Follow these steps:

1. Create a function called EEF RTV Order and define the parameter interface as
follows:

Notes:

m EEF RTV Order has function option Duplicate parameters set to Yes.
m PR3 is defined as a multiple-instance array parameter.

PR1

Indicates the input parameter for the Order number, passed as a field (FLD),
from which the Header and Detail are retrieved.

PR2

Indicates the output parameter for the Order Header, passed as a record
format (RCD), which is populated with the single-instance data for the Order
Header.

PR3
Indicates the output parameter for the Order details array.

Note: This parameter is marked as being a multiple-instance parameter, so
multiple order detail records can be contained within this one parameter. If the
A(Pass as Array) field is marked as Y, before usages have been specified on the
EDIT FUNCTION PARAMETER DETAILS panel for the fields of this parameter a
warning message will be sent: Y2V0717 A (Pass as Array) cannot be set to
'Y'.However, you may leave the field set to Y and zoom into the parameter to
specify usages.

Op: COCSIO1 QPADEVOOOT 1/25/12 15:07:59
EDIT FUNCTION PARAMETERS SBCB8BCMDL
Function name. . : EEF RTV ORDER Type : Execute external function
Received by file : Order detail Acpth: *NONE
Passed Pgm Par

File/xFIELD Access path/Field/Array Ctx Ctx
xFIELD Order number PR1 PR1
Order header Retrieval index PR2 PR2

XArrays Order Details PR3 PR3

758 Building Applications

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

2.

EDIT FUNCTION PARAMETER DETAILS

Function name.

Received by file
Parameter (file)
? Field

Order number

EDIT FUNCTION PARAMETER DETAILS

Function name.
Received by file
Parameter (file)
Field

Order number

Customer name

Order date

EDIT FUNCTION PARAMETER DETAILS

Function name.
Received by file
Parameter (file)
Field
Product code
Order number
line number
quantity

ELEMENT NUMBER

Define the parameter details as follows:

Op: COCSIO1 QPADEVOOOT 1/25/12 15:08:35

SBC86CMDL
Type
Acpth:
Passed as:

EEF RTV ORDER
Order detail
*FIELD

Execute external function
Order number

FLD

Role

Usage Flag error

I

Op: COCSIO1 1725712 15:08:45

SBC86CMDL
Type
Acpth:

Passed as:

QPADEVOOOT

EEF RTV ORDER Execute external function
Order detail

Order header

Retrieval index

RCD

Usage Role
0 MAP
0 MAP
0 MAP

Flag error

Op: COCsIo1
SBC8BCMDL
Type
Array:

QPADEVOOOT 1/25/12 15:09:00

EEF RTV ORDER Execute external function
Order detail

xArrays

Order Details

RCD (ARRAY)
Number of elements

Passed as:
100
Role
MAP
MAP
MAP
MAP
MAP

Usage
0]

Flag error

0
0
0
0

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 759

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

3. Configure the EEF RTV ORDER : Action Diagram as follows:
Notes:
m Function calls that are not self-evident are shown in the following examples.

m The Count field should be defined as type NBR.

EDIT ACTION DIAGRAM SBC8B6CMDL Order detail
FIND=> EEF RTV ORDER

I(C,I,S)F=Insert construct I(X,0)F=Insert alternate case

I(A,E,Q,*,+,-,=,=A)F=Insert action IMF=Insert message
> EEF RTV ORDER

Retrive Order Header:
.IRTV ORDER HEADER - Order header x
Load up an array from the database...

..and count the number of total elements loaded:
LOAD ORDER DETAIL ARRAY - Order detail x
LCL.Order number = PR1.0Order number
LCL.Count = CON.1
Loop through the array:
.=REPEAT WHILE
-LCL.Count LE LCL.Total elements

Retrive the array element data (for element LCL.COUNT) into LCL:
IRTV ORDER DETARIL - *Arrays x

Use *MOVE ARRAY to populate the multiple-instance array...

...that represents the order details:

IIPRS.Urder Details(LCL.Count) .Product code = LCL.Product code

EDIT ACTION DIAGRAM Edit SBCB86CMDL Order detail
FIND=> EEF RTV ORDER
I1(C,I,S)F=Insert construct I(X,0)F=Insert alternate case
I1(R,E,Q,*,+,-,=,=A)F=Insert action IMF=Insert message

PR3.0rder Details(LCL.Count).Order number = LCL.Order number

PR3.0rder Details(LCL.Count).line number = LCL.line number

PR3.0rder Details(LCL.Count).quantity = LCL.quantity
Increment the array element number (LCL.COUNT):
fcL.count = LcL.Count + CON.1
"-ENDWHILE

760 Building Applications

Create an EXCEXTFUN to Retrieve the Order Header and Order Details

4. Initiate a call to the RTV ORDER HEADER as follows:

EDIT ACTION DIAGRAM Edit
FIND=>

I(C,I,S)F=Insert construct
I(A,E,Q,*,+,-,=,=A)F=Insert action

EDIT ACTION - FUNCTION DETAILS
Function file Order header
Function. . . : RTV ORDER HEADER

Parameter
Order number
Customer name
Order date

SBC8BCMDL Order detail

EEF RTV ORDER

I(X,0)F=Insert alternate case

IMF=Insert message

Object Name

Order number

Customer name
Order date

5. Initiate a call to LOAD ORDER DETAIL ARRAY as follows:

EDIT ACTION DIAGRAM Edit SBCB8EBCMDL Order detail

FIND=> EEF RTY ORDER
I(C,I,S)F=Insert construct

I(R,E,Q,*,+,-,=,=A)F=Insert action

I(X,0)F=Insert alternate case
IMF=Insert message

EDIT ACTION - FUNCTION DETARILS
Order detail
LOAD ORDER DETAIL ARRAY

Function file
Function.

Obj
Parameter Typ
Order number FLD Order number
line number FLD 1

Total elements FLD

¢« Object Name

Total elements

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 761

Set the EXCEXTFUN to a Module

6. Initiate a call to RTV ORDER DETAIL as follows:

EDIT ACTION DIAGRAM Edit SBCBBCMDL Order detail
FIND=> EEF RTV ORDER
I(C,I,S)F=Insert construct I(X,0)JF=Insert alternate case

I(AR,E,Q,x,+,-,=,=A)F=Insert action IMF=Insert message

EDIT ACTION - FUNCTION DETAILS
Function file : *Arrays
Function. . . : RTV ORDER DETRIL

I0B Parameter Ctx Object Name

0 Product code LCL Product code
Order number LQL Order number
line number CL line number
CVELR SR AV CL guantity

Element number CL Count

7. Save and exit the function.

Back to Top

Set the EXCEXTFUN to a Module

CA 2E automatically creates the EXCEXTFUN function type as PGM (Program), so you
must change the type to MOD (Module).
Follow these steps:

1. From EDIT DATABASE RELATIONS take option F against the Order detail file to
access the EDIT FUNCTIONS screen.

2. Take option Z (Details) against EEF RTV ORDER for the EDIT FUNCTION DETAILS
screen.

3. Change the Target HLL to RP4 or CBI. Take option T (T-ILE Compilation Type) to
change the object type to MOD.

4. Press enter to save the changes and press F3 to return the EDIT FUNCTIONS screen.

The EXCEXTFUN has all the necessary configuration and details, so you must then
generate and compile before you can use it.

Back to Top

762 Building Applications

Generate and Compile the Module

Generate and Compile the Module

With the EXCEXTFUN fully configured, you must compile the module.
Note: Before generating the module, your model must be set up to include PCML in the
module. For more information, see the section “PCML in Module” in the Building

Applications guide for details

Follow these steps:

=

Take option J (Generate) on the new EEF RTV ORDER function.

N

Press F17 for the Services Menu, and take Option 1 (Submit Model Create Request).
3. Locate the EEF RTV ORDER function and press Enter.

Note: Depending on your processing speed, the compile can complete quickly or
take several minutes.

4. Verify that the compile completed correctly.

5. Press F3 until you return the EDIT FUNCTIONS screen.

This procedure completes your work on the EXCEXTFUN module. Next, you create a
Service Program for use with the module.

Back to Top

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 763

Create a Service Program

Create a Service Program

In the CA 2E model, you define a Service Program (*SRVPGM) function type, which you
will then use with the module. You can customize the source member name, which is
then used for the final *SRVPGM object name.

Follow these steps:

1. From EDIT DATABASE RELATIONS take option F against the Order detail file to
access the EDIT FUNCTIONS screen.

2. Create a Service Program and complete the fields as follows:
Function:
Order srvpgm
Function Type:
Service Program
Access path
*NONE

A Service Program does not contain parameters or an action diagram, so you must add
the module in the following procedure.

Back to Top

764 Building Applications

Add the Module to the Service Program

Add the Module to the Service Program

You now have your EEF RTV ORDER module and your Order srvpgm Service Program.
Combine the two by adding the module to the Service Program.
Follow these steps:

1. Take option F against the Order detail file from EDIT DATABASE RELATIONS to
access the EDIT FUNCTIONS screen.

Take option Z (Details) on the new service program Order srvpgm.
Take option M (Modules).

Press F6 (add) to add a module.

Take option X (Select) against the EEF RTV ORDER module.

o v c wnwN

Press F3 to access the SERVICE PROGRAM MODULE screen.
Verify that the module is listed.
7. Press F3 until you return the EDIT FUNCTIONS screen.

The combined Service Program and module are not usable until you generate and
compile them in the following procedure.

Back to Top

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 765

Generate and Compile the Service Program

Generate and Compile the Service Program

The combined module and Service Program are not usable until you generate and
compile.
Follow these steps:

1. Take option F against the Order detail file from EDIT DATABASE RELATIONS to
access the EDIT FUNCTIONS screen.

2. Take option J (Generate) on the Order srvpgm Service Program.
3. Press F17 for the Services Menu, and take option 1 (Submit model create).
4. Press Enter to submit the job, which generates and compiles the source.

Note: Depending on your processing speed, the compile can complete quickly or
take several minutes.

5. Press F3 until you return to the EDIT FUNCTIONS screen.
This gives you a usable, compiled Service Program that includes the EEF RTV Order
module you created. Next, create a Web Service Function that includes the compiled

Service Program.

Back to Top

766 Building Applications

Create a Web Service Function

Create a Web Service Function

The CA 2E Web Service uses the Service Program you created in the previous
procedures to create a Web Service Function. This function contains one-to-multiple
operations, where each operation corresponds to a single procedure in a module in an
ILE Service Program.

Follow these steps:

1.
2.

5.

Access the EDIT FUNCTIONS screen.
Add a new Web Service function type by competing the following fields:
Function
Order websrv
Function type
Web Service
Access Path
*NONE

Press Enter to save, and then take option Z (Details) for the EDIT FUNCTION DETAILS
screen.

Complete the details fields as follows:
Web service name
GetOrder
Service program file
Order Detail
Service Program Function
Order srvpgm

Press Enter to save, and then F3 until you return the EDIT FUNCTIONS screen.

The result is a modeled Web Service Function, but it is not available to invoke until you
complete the following procedure to deploy Web Service Function on your Web Server.

Back to Top

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 767

Deploy the Web Service Instance

Deploy the Web Service Instance

From the newly created Web Service Function, you can deploy a Web Service instance.
Use the YCRTWS (Create Web Service Instance) command to install the web service to
the IBM Web Services Server.

Notes:

m Before you deploy the Web Service Instance, verify that the Runtime Library List
contains all of the libraries that are required to support the runtime business logic.

m Here we use the EDIT FUNCTION DETAILS screen, but you can also invoke YCRTWS
from the command line and then configure the appropriate parameters.
Follow these steps:

1. Take option F against the Order detail file from EDIT DATABASE RELATIONS to
access the EDIT FUNCTIONS screen.

2. Take option Z against the web service Order websrv.
3. Press F10 (Create Web Service Instance) and complete the fields as follows:
Update Model
*ADD
Install to Server
*YES
Web Services Server
YourServerName (the actual name for you Web Server)
4. Press Enter to save and deploy.

The Web Service Function is now available for users to call from your Web Server. Test
the Web Service before notifying your users.

For detailed information on web service deployment see the Chapter Web Service
Creation (see page 191).

Note: Use the IBM Web Administration interface to start, stop, and test the deployed
Web Service.

Back to Top

768 Building Applications

*MOVE ARRAY (*ALL)

*MOVE ARRAY (*ALL)

Four individual *MOVE ARRAY statements are used in the example code for EEF RTV
Order (Order detail) (see page 757) to move data from a field in the LCL context to a
field in a multiple instance array parameter. This is a good illustration of how you can
use *MOVE ARRAY. However, you can use *MOVE ARRAY, *ALL support for a more
efficient approach.

You can replace the multiple *MOVE ARRAY statements with a single *MOVE ARRAY
statement, specifying *ALL for the *Result and *Factor fields. You do not have to change
the action diagram if you then add or remove fields from the array; a simple
regeneration and recompilation works.

The following EDIT ACTION DIAGRAM panel shows how you can use *MOVE ARRAY
(*ALL:)

EDIT ACTION DIAGRAM Edit SBC86CMDL Order detail
FIND=> EEF RTV ORDER xALL

I(C,I,S)F=Insert construct I(X,0)F=Insert alternate case

I(A,E,Q,*,+,-,=,=A)F=Insert action IMF=Insert message
> EEF RTV ORDER x*ALL

Retrive Order Header:

.IRTV ORDER HEADER - Order header x
Load up an array from the database...

..and count the number of total elements loaded:
LOAD ORDER DETAIL ARRAY - Order detail x
LCL.Order number = PR1.0rder number
LCL.Count = CON.1
Loop through the array:

.=REPEAT WHILE

-LCL.Count LE LCL.Total elements

Retrive the array element data (for element LCL.COUNT) into LCL:
IRTV ORDER DETAIL - *Arrays x

Use xMOVE ARRAY to populate the multiple-instance array...

...that represents the order details.

_IPRS.Order Details(LCL.Count) .*ALL = LCL.x*ALL

Appendix B: How to Create a Deployable Web Service Using a Multiple-instance Array 769

*MOVE ARRAY (*ALL)

The following EDIT ACTION DIAGRAM — FUNCTION DETAILS panel shows more detail on
how you can use *MOVE ARRAY (*ALL:):

EDIT ACTION DIAGRAM Edit SBC8B6CMDL Order detail

FIND=> EEF RTV ORDER =xALL
I(C,I,S)F=Insert construct I(X,0)F=Insert alternate case
I1(A,E,Q,*,+,-,=,=A)F=Insert action IMF=Insert message

EDIT ACTION - FUNCTION DETAILS
Function file
Function. . . : xMOVE ARRAY

Parameter Object Name
xResult xALL

XArray Order Details
xArray index Count

*Factor 2 *ALL

xArray

*Array index

Back to Top

770 Building Applications

Index

* access ® 62
access path ¢ 35, 264, 291
* re-read subfile record ¢ 529 access path combinations » 264
*ADD e 445 access paths ¢ 374, 381, 616, 619
*COMPUTE e 447 acronyms ¢ 26
*CONCAT » 450 action bar e 253, 301, 331, 332, 346
*continue transaction ¢ 527 action bar header/footer ¢ 332, 333
*cursor field 527 action bar standards e 332
*cursor row and *cursor column ¢ 528 action diagram 34, 42, 94, 283, 432, 433, 581, 585,
*CVTVAR function ¢ 503 608, 613, 636
*Date Lists » 458 Action Diagram Editor 640
*defer confirm ¢ 526 action diagram user points ¢ 613
*initial call » 531 action diagrams, modifying ¢ 431
*Messages ¢ 136, 159, 164, 165, 167 activate or deactivate line command ¢ 563
*next RDB ¢ 527 activate/deactivate ¢ 563
*print format ¢ 526 adding * 329, 331, 445, 555
*program mode ¢ 521 adding an action ¢ 434
*record data changed ¢ 524 additional processing ¢ 35
*Record Data Changed program field 524 ADDPFTRG command ¢ 218
*record selected ¢ 524 admin tasks e 223
*Record selected program field » 154 all 586
*reload subfile ¢ 523 allow right to left/top to bottom option ¢ 252
*return code ¢ 522 allowed roles ¢ 270
*Sbmjob override string context field ¢ 532 applications ¢ 632
*scan limit ¢ 525 array ¢ 71, 95, 284, 458, 503
*SFLSEL e 310, 325 array changes 71
*Synon work field e 531 arrays e 284
*Template file » 614, 615 as data structure ¢ 503
1 as parameter ¢ 284
attaching to device design ¢ 393
132 column screen option ¢ 251 attachment levels ¢ 390
attributes ¢ 316
2 audit stamp ¢ 524
IND 506 automatic (ALCVNM) « 43
IND context * 506 automatic choice ¢ 360, 361
automatic line numbering » 112
3 B
3RD ¢ 507
3RD context ® 507 basic properties ¢ 33, 83, 257, 288
batch processing 132
A batch submission ¢ 586

benefits e 217

benefits of « 609

Bi-directional support ¢ 56, 252
body fields « 294

abbreviations ¢ 27
absolute ¢ 365
absolute day e 455

Index 771

border model values ¢ 57

Both (I/O) parameter » 258

building block approach ¢ 37
built-in function example 457, 465

built-in functions e 31, 445, 446, 447, 450, 455, 463,
466, 467, 468, 469, 470, 471, 480, 482, 484, 485,

486, 488, 490, 492, 493, 501, 503
business logic, reusing 639
bypass key screen option e 242

C

CA 2E implementation ¢ 220

CA 2E model support ¢ 223

CA 2E processing flow ¢ 220

Call a Program (Y2CALL) » 260

calling function flag » 259

CDE field usage » 161

change object 587

Change Object (CHGOBJ) » 85

Change Object (CHGOBJ) function e 85, 524, 587
changing ¢ 58, 71, 316, 319, 365
changing function level ¢ 57

changing model level ¢ 58

changing name ¢ 58

checking * 36

CHGOBI 85, 524, 587

CHGOBIJ function * 85

choosing options ¢ 238

closedown program e 243

Closedown Program e 243

CND ¢ 515

CNT (count) function field e 87

CNT function field ¢ 87

COBOL » 143, 145

COBOL indicators in user source ¢ 143
COBOL specification order 143
combinations ¢ 264

command key defaults ¢ 59
comments ¢ 46

comments in source code (YGENCMT) ¢ 46
commit e 446

commitment control e 244

compare (CMP) ¢ 549

compare (CMP) condition ¢ 549
Compare Model Objects (YCMPMDLOBJ) ¢ 630
compared to 346

comparing two functions ¢ 630
comparison operator, IS ¢ 527

components ¢ 33

compound conditions 550, 551, 554, 555, 637
compute ¢ 447, 448

compute condition symbols (YACTCND) e 42
compute expression symbols (YACTFUN) e 42
CON ¢ 517

CON context ¢ 517

concatenation ¢ 450

condition fields ¢ 336

condition types ® 548, 549

condition values ¢ 44

conditions ¢ 442, 547, 555

confirm option e 239

confirm prompt value (YCNFVAL) » 43
considerations ¢ 139, 254

constants ¢ 331

construct resolution ¢ 636, 638

constructs ¢ 441, 442, 443, 559

context ¢ 501, 503, 505, 515, 518, 532, 554
control data structure ¢ 224

conventions ¢ 300

conventions and styles ¢ 300

conversion e 477

convert model to run-time ¢ 234

convert trigger data ¢ 229

Convert Trigger Data command ¢ 229
convert variable e 453, 503

Copy Back (YCPYMSG) » 43

copy back messages ¢ 244

copy back messages function option ¢ 244
copying ¢ 609, 612

copying a function ¢ 610, 611, 612, 613
copying from one function to another ¢ 584
copying user points ¢ 613

Count (CNT) function field » 87

create object ¢ 588

Create Object (CRTOBJ) » 88

creating ® 615

creating menu bars ¢ 346

creating new function from existing one ¢ 609
creating Trigger Functions ¢ 224

cross-type copying ¢ 611, 612, 613

CRTOBJ « 88

CRTOBIJ function ¢ 88

CTL » 508

CUA entry e 253, 315, 316

CUA prompt ¢ 44

CUA prompt (YCUAPMT) 44

CUA text » 253, 300, 301, 315, 332

772 Building Applications

CUA text standard ¢ 332

CUR ¢ 511

cursor positioning ¢ 488

cursor progression e 352
cursor-sensitive (YHLPCSR) o 47
cutoff (YCUTOFF) e 45

D

database ¢ 217, 501

database changes ¢ 238

database contexts ¢ 501, 502

database function * 63, 71, 85, 88, 94, 160

database functions ¢ 29

database implementation e 45

database triggers ¢ 234

date » 45, 152, 169, 455, 457, 458, 463, 465, 467,
477

date details ¢ 455

date details built-in function e 455

date increment » 463

date increment built-in function e 463

date list » 458

date lists array 458

DB1 ¢ 501

DB2 ¢ 502

DDS » 346, 389

DDS menu bar ¢ 346

DDS menu bars- » 346

DDS PUTOVR keyword (YPUTOVR) ¢ 50

default » 34, 41, 46, 59, 62, 85, 154, 259, 290

default (YHLLGEN) « 47

Default Condition field » 88

default function ¢ 161

default layout » 296, 297, 298

default logic » 158, 159

default RDB (YGENRDB) ¢ 47

default report formats » 374

defaults 59

Define Report Format (DFNRPTFMT) e 71, 92

Define Screen Format (DFNSCRFMT) « 71, 89

defined » 614

defining * 80, 84, 271, 367, 391, 551

defining parameters » 271, 283

defining print objects 368

defining usage and role ¢ 280

definitions ¢ 324

Delete DBF record (DLTOBJ) » 94

delete function field « 330

delete object ¢ 589

Delete Object (DLTOBJ) » 94

Delete Object (DLTOBJ) function ¢ 94, 95

deleting 330, 331, 555, 559, 621

Derived (DRV) * 95

Derived (DRV) function field « 95

description ¢ 71, 258, 357, 389

design considerations ¢ 84, 161, 299, 351

design elements 293

design standard e 289

device ¢ 505

device considerations ¢ 154, 158

device contexts ¢ 505, 506, 507, 508, 510, 511, 512

device design ¢ 34, 44, 47,49, 51, 73, 267, 268, 288,
289, 290, 291, 293, 300, 301, 305, 316, 317, 318,
324, 326, 345, 353, 389, 585, 613

device design formats ¢ 326

device design function keys 324

device designs ¢ 317, 619

device designunderstanding ¢ 288

device function ¢ 71, 75, 89, 92, 96, 100, 103, 105,
113,117, 120, 122, 152, 154, 161, 291, 389

device function processing * 34

device functions ¢ 30

device prompt file (YPMTMSF) e 50

device user source ¢ 389, 390, 391, 393, 395, 396,
401, 411

DFNRPTFMT e 71, 92

DFNSCRFMT e 71, 89

Display All Functions panel ¢ 62

display attributes ¢ 336

display features e 239

display file 589

Display File (DSPFIL) » 96

Display File (DSPFIL) function ¢ 71, 96

Display Function References panel ¢ 622

display length 325

display record ¢ 591

Display Record (2 panels) (DSPRCD2) « 103

Display Record (3 panels) (DSPRCD3) ¢ 105

Display Record (DSPRCD) 100

Display Record (DSPRCD) function e 71, 100

Display Record (DSPRCD?2) function « 71, 103

Display Record (DSPRCD3) function e 71, 105

Display Transaction (DSPTRN) function ¢ 71, 108

displaying device design 326

displaying device design formats ¢ 326

displaying formats ¢ 326

distributed file I/O control » 249

Index 773

distributed file /0O control option * 249
divide ¢ 466

divide with remainder ¢ 466
DLTOBJ ¢ 94

DLTOBIJ attached to UPD ¢ 94
DLTOBJ use ¢ 95

Document Model Functions (YDOCMDLFUN) e 629
documentation ¢ 629
documenting ¢ 629

domain ¢ 36, 138

DRDA ¢ 47, 249

driver program ¢ 633

drop down selection field 348
dropped ¢ 328

dropping ¢ 364

dropping fields e 323

DRV function field ¢ 95

DSPFIL 96, 97, 633

DSPFIL for performance ® 635
DSPFIL function e 97

DSPRCD e 100, 101

DSPRCD2 « 103

DSPRCD3 ¢ 105

DSPTRN e 108

DTL ¢ 506

duration * 467

duration built-in function ¢ 467
dynamic mode option ¢ 241

E

Edit Device Structure panel e 154

Edit Field Details panel ¢ 88

Edit File (EDTFIL) » 113

Edit File (EDTFIL) function ¢ 71, 113

Edit Function Options panel » 57, 237
Edit Function Parameters panel » 81, 283
edit mask » 354

Edit Message Functions panel ¢ 80

Edit Model Object List panel ® 627

edit record ¢ 598

Edit Record (2 panels) (EDTRCD2) ¢ 120
Edit Record (3 panels) (EDTRCD3) e 122
Edit Record (EDTRCD) » 117

Edit Record (EDTRCD) function » 71, 117
Edit Record (EDTRCD2) function * 71, 120
Edit Record (EDTRCD3) function ¢ 71, 122
Edit Transaction (EDTTRN) function 71, 112
editing » 317, 324, 326, 327, 554, 636

editing device design * 326

editing formats ¢ 326

editing function key * 324

editing Trigger Functions ¢ 226

EDTFIL » 113, 114

EDTFIL for performance ® 635

EDTRCD » 117

EDTRCD2 » 120

EDTRCD3 » 122

EDTTRN/DSPTRN e 615

effect of parameters ¢ 161

elapsed time ¢ 468

elapsed time built-in function * 468

ELM (array element) ¢ 503

ELM context ¢ 503

ELM context field e 503

embedded print objects ¢ 370

enable selection prompt text option 252

end trigger server 232

End Trigger Server command ¢ 232

Enhanced User Interface (ENPTUI) e 345

ENPTUI 345, 346, 348, 352, 353, 354

entering ¢ 554

entry field attributes 352

entry level ® 395

environment ¢ 248

environment (YEXCENV) ¢ 46

error handling (¥*PSSR) ¢ 46

error highlighting ¢ 165

errors ¢ 259

example 138, 145, 373, 379, 411

examples ¢ 254

exception routine (RPG) e 245

EXCEXTFUN e 130, 633

EXCINTFUN e 135

excluded dates ¢ 458

EXCMSG » 136

EXCMSG substitution variables ¢ 136

EXCUSRPGM e 138, 612

EXCUSRPGM does not allow » 138

EXCUSRPGM function ¢ 138

EXCUSRPGM program e 138

EXCUSRSRC ¢ 139, 612

EXCUSRSRC and calling function e 139

EXCUSRSRC does not allow ¢ 139

EXCUSRSRC example ¢ 145

EXCUSRSRC function ¢ 145

Execute External Function (EXCEXTFUN) e 77, 130,
132

774 Building Applications

Execute Internal Function (EXCINTFUN) e 77, 135

Execute Message (EXCMSG) ¢ 136

Execute Message (EXCMSG) function ¢ 79, 136, 137

Execute User Program (EXCUSRPGM) ¢ 78, 138, 612

Execute User Source (EXCUSRSRC) ¢ 78, 139, 145,
612

execution location ¢ 247

exit after add option « 241

exit control e 243, 244

exit program ¢ 469

exiting e 585, 586

explanations ¢ 309

explanatory text 311, 313, 314, 315, 338

explicitly assigned for EXCUSRPGM e 138

expression ¢ 448

external MSGIDs (YPMTGEN) e 49

F

F4 prompt ¢ 44, 161, 319

F4 prompting * 44

field » 36, 62, 85

field label text » 325

field level e 396

field text » 324

field usage ¢ 295

field validation ¢ 36

fields » 84, 291, 319

fields by format e 375

file » 332

find services ¢ 575

finding where used ¢ 622

flag error status e 259

form ¢ 314

format (YDATFMT) ¢ 45

format relations ¢ 327, 328
formats » 291, 315, 326, 358, 363
formats on PRTFIL ¢ 154

from Display All Functions ¢ 433
from Display Services Menu ¢ 626, 629
from Edit Database Relations ¢ 432
from Edit Function panel ¢ 610
from Edit Functions panel ® 626
from Exit Function Definition panel » 627
from Exit panel » 610

from Open Functions e 432

function e 33, 35, 37, 58, 75, 84, 85, 88, 89, 92, 94,
96, 100, 103, 105, 108, 113, 117, 120, 122, 130,
135, 136, 138, 139, 152, 154, 158, 159, 160, 161,
164, 165, 167, 168, 319, 332, 389, 434, 532, 552,
586, 587, 609, 611, 612, 613, 621, 622, 625, 629,
630

function contexts ¢ 532, 533, 534, 536

function details » 80

function device design ¢ 585

function field * 32, 82, 83, 84, 95, 150, 151, 168, 169,
329, 330, 372

function fields ¢ 329, 377, 387

function fields to action diagrams * 329

function key ¢ 59, 308, 309, 310, 316, 324, 338

function keys 59, 324, 559

function name ¢ 58

function option e 33, 50, 85, 88, 94, 97, 101, 108,
114,117,130, 135, 138, 152, 155, 160, 161, 237,
238, 239, 240, 243, 244, 245, 246, 247, 248, 249,
250, 251, 253, 524

function option for NPT gen ¢ 246

function parameter ¢ 257, 259, 260, 261, 271, 280,
284,292,584

function parameters » 283

function structure charts ¢ 608

function templates. See template function ¢ 613

function types ¢ 29, 30, 75, 84, 611

functions * 629, 639

G

general rules e 294

generate as a subroutine ¢ 246
generate help ¢ 246

generating functions ¢ 627
generating/compiling ¢ 625
generation ¢ 626, 627

generation (YGENHLP) ¢ 46
generation function option ¢ 246
generation mode ¢ 245
generation options e 245, 246, 247

H

header/footer 251, 291

help » 333

help text ® 56

Help text » 46, 47, 48, 56, 246, 345
help text for NPT ¢ 246

Help text for NPT e 246

Index 775

hidden fields ¢ 323
hiding ¢ 358, 363

high level language (HLL) * 47, 138, 139

HLL » 47

I

I/0O field changes » 612

I/0O fields across types 612
identifying ¢ 260

identifying defaults » 259
ideographic text character (IGC) 308
if action bar, what type? ¢ 240
IGC support ¢ 308

impact analysis ® 622
implementing ¢ 218

implicit return code ¢ 260

in the action diagram e 283
included dates ® 458

including narrative text ¢ 630
indentation * 365, 366
indicators ¢ 141, 143
indicators in user source ¢ 141
Input only parameter ¢ 258
input parameter ¢ 87, 150, 151
Input parameter ¢ 165
Input/Output parameter ¢ 258
integrity checking ¢ 36, 635
interactive generation ¢ 586
internal function e 85, 88, 633
internally referenced ¢ 616

IS e 527

IS comparison operator e 527
is this a window option ¢ 253
is this an action bar option ¢ 253
iterative ¢ 443

iterative constructs e 443

leaders (YLSHFLL) » 47
length ¢ 325

level break ¢ 155

level breaks ¢ 155

line command ¢ 563

line commands e 555, 561
line numbering, automatic ¢ 112
line selection values 368
linking * 369

linking print functions ¢ 369
literal 515

literal contexts 515, 517
locked function ¢ 586

locks » 586

LST condition ¢ 548

M

map ¢ 261

map parameter ¢ 261

MAX (maximum) function field ¢ 150
MAX function field e 150

Maximum (MAX) e 150

Maximum (MAX) function field e 150
maximum PRTOBJs ¢ 155

menu bars ¢ 346

merger commands ¢ 401

message ® 43, 50, 52, 78, 80, 81, 136, 159, 165, 244,

284

message function ¢ 32, 81, 136, 159, 164, 165, 167,

168
message types ¢ 84
messages ¢ 284
MIN (minimum) function field e 151
MIN function field e 151
Minimum (MIN) ¢ 151
Minimum (MIN) function field 151
model to run-time conversion e 234

J model values ¢ 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,

JOB 518 51, 52, 56, 57, 58, 248, 250, 253, 254, 533
modified report layout ¢ 378

K modifying ¢ 324, 325, 330, 331, 334, 336, 366, 367,

KEY + 505 moS:jlo « 470

1 1 1 1 117, 120, 122

key value prompt * 100, 103, 105, 108, 117, 120, move 471

L move all ® 471, 480
move built-in function ¢ 477

layout « 318' multi-line entry ¢ 353

layout - subfile ¢ 295 multiple-record default layout ® 297

LCL » 533

776 Building Applications

multiple-record panel design » 263, 297
multiply e 482

N

name ¢ 33

names ¢ 33

naming ¢ 43, 47,49, 138

narrative text e 630

National Language Support ¢ 299
national languages ¢ 299

navigational aids ¢ 61

Neither (CRTOBIJ) » 88

Neither parameter ¢ 88, 138, 139, 165, 258
new functions (YHLLVNM) e 47

NLL ¢ 534

NLS ¢ 299, 351

no-error relations ¢ 328

non-restricted virtual fields ¢ 264, 268
normalization ¢ 37

notepad ¢ 561, 584

NOTEPAD e 562

Notepad, placing functions in a wrapper ¢ 640
NPT e 345

null update suppression e 49, 250, 524
number of function key text lines * 316
NXT e 512

0

omitting records * 154

on subfile 264

on subfiles ¢ 264

open functions ¢ 586

optimizing ¢ 634

optimizing programs ¢ 634

optional ¢ 327

options e 585

0S/400 Data Management ¢ 218

Output only parameter 258

output/input fields » 612

overrides if submitted job ¢ 247

overview ¢ 29,31, 32,34,71, 76, 78, 82, 136, 154,
158, 159, 301, 548

P

panel ¢ 293
panel context specific ® 345
panel defaults ¢ 305

panel design ¢ 294, 295, 296, 297, 305, 311, 315,
316, 338

panel design elements ¢ 293

panel layout e 294, 295

panel layout (YSAAFMT) e 51

PAR ¢ 532

parameter considerations ¢ 155

parameter fields in user functions ¢ 138

parameters ¢ 33, 81, 87, 88, 95, 138, 150, 155, 158,
168, 257, 259, 260, 261, 262, 263, 269, 270, 280,
283, 284, 292, 584, 619

parameters for standard functions ¢ 259

parameters required ¢ 218

parameters to PRTOBJ functions 386

passing (PRTFIL) e 155

performance considerations ¢ 631

PGM ¢ 519

PGM fields » 519, 521, 522, 523, 524, 525, 526, 527,
528,529, 531

PGM Fields ¢ 526

PMTRCD e 152

PMTRCD field validation e 152

PMTRCD for performance ® 635

positioner ¢ 269

positioner parameter ¢ 97, 114, 155, 161, 269

post-confirm pass option ¢ 100, 242

prefix (YOBJPFX) » 49

presentation convention ¢ 289

Print File (PRTFIL) 154

Print File (PRTFIL) function e 71, 154, 155, 357

Print Object (PRTOBJ) function ¢ 71, 154, 158, 357,
369, 370

print objects ¢ 368, 370

print on overflow ¢ 365

printing a list ® 629

printing list of functions ¢ 629, 630

processing techniques ¢ 74

Program mode ¢ 75

program modes ¢ 75

program objects 634

program size ¢ 633

Prompt Record (PMTRCD) e 152

Prompt Record (PMTRCD) function e 71, 152

prompt text ¢ 338

prompting (F4) » 44

properties of functions ¢ 33

PRTFIL e 154, 155, 357

PRTFIL processing e 154

PRTOBJ ¢ 158, 357, 370

Index 777

PRTOBJ embedding ¢ 154
PRTOBJ formats ¢ 154
PRTOBJ functions ¢ 382
PRTTEXT parameter ¢ 630
purpose ¢ 63, 261, 269

Q

QRY (query) access path ¢ 97, 154, 158, 160, 161
query (QRY) access path ¢ 97, 154, 158, 160, 161
quit ¢ 501

R

range (RNG) » 549

RCD » 510

reclaim resources ¢ 243

reclaim resources option ¢ 243

record function ¢ 293

Recursion e 37

referential » 36

referential integrity » 36

relation ¢ 636

relationship to function 35

relative 366

reload subfile, display file ¢ 100

reload trigger references ¢ 233

Reload Trigger References command e 233

repeat prompt option ¢ 241

report ¢ 356

report design ¢ 356, 358, 368, 372, 373, 374, 375,
377,378, 379, 381, 382, 386, 387

report fields 361

report format ¢ 358, 360, 364

report structure ¢ 367, 368

required 327

restricted virtual fields ¢ 264, 267

restrictor e 261

restrictor parameter ¢ 97, 114, 117, 155, 161, 261,
262, 263, 264, 267

result parameter ¢ 87, 150, 151, 168

retrieve condition ¢ 44, 484

retrieve field information ¢ 486

Retrieve Message (RTVMSG) ¢ 159

Retrieve Message (RTVMSG) function ¢ 79, 159

Retrieve Object (RTVOBJ) » 160

Retrieve Object (RTVOBJ) function ¢ 160

return code ¢ 138, 260

reusable subroutines ¢ 552

reusing ¢ 633

right-hand side text ¢ 44, 305
right-hand text (YCUAEXT) 44
role e 261

rollback ¢ 485

RPG ¢ 46, 141, 145

RPG parameters » 141
RTVMSG e 159

RTVOBIJ 160

run-time support ¢ 234

S

screen text constants e 247

second-level ¢ 81

second-level message text » 81, 136

SELCRD ¢ 161

select option ¢ 310, 325

Select Record (SELRCD) » 161

Select Record (SELRCD) function » 71, 161

selecting primary ¢ 554

selecting statements ¢ 640

selector ¢ 333

selector parameter ¢ 97, 161

selector role ¢ 340

SELRCD ¢ 161

send all messages option ¢ 242

Send Completion Message (SNDCMPMSG) ¢ 164

Send Completion Message (SNDCMPMSG) function
79, 164

Send Error Message (SNDERRMSG) ¢ 165

Send Error Message (SNDERRMSG) function e 79,
165

Send Information Message (SNDINFMSG) ¢ 167

Send Information Message (SNDINFMSG) function e
79, 167

Send Status Message (SNDSTSMSG) « 168

Send Status Message (SNDSTSMSG) function e 79,
168

sequence ¢ 442

set cursor » 488

setting ¢ 524

share subroutines 247

shared subroutines ¢ 552

shipped field » 62

shipped files ® 62, 136, 159

shipped files access ¢ 62

single e 637

single and multiple record ¢ 298

single compound condition ¢ 637

778 Building Applications

single function ¢ 585
single-record default layout 296
single-record panel design ¢ 262, 296
SNDCMPMSG e 164

SNDERRMSG ¢ 165

SNDERRMSG function ¢ 165
SNDERRMSG substitution variables e 165
SNDINFMSG ¢ 167

SNDSTSMSG » 168

source considerations ¢ 141, 143
space between formats ¢ 364
spacing between formats ¢ 364
specifying » 81, 159, 237, 284, 310
specifying an action e 433
specifying an action ¢ 434
specifying panel design ¢ 315
specifying with type EXC e 137
standard ¢ 251

standard features ¢ 73

standard features ¢ 74

standard function defaults e 259
standard function overview o 29
standard functions ¢ 29

standard header function ¢ 291

standard header/footer e 251, 252, 253, 254, 291,

317, 356
start trigger server ¢ 231
Start Trigger Server command ¢ 231
structure ¢ 632
structure symbols (YACTSYM) e 42
styles ¢ 300
subfile 108, 113, 310, 325
subfile function ¢ 293
subfile select options ¢ 240
subfile selector text ¢ 339
subfile selector value » 313
subfile selector values ¢ 310, 313
substring ¢ 490
subtract ¢ 490
Sum (SUM) » 168
Sum (SUM) function field » 168
SUM (sum) function field » 168
SUM function field ¢ 168
support ¢ 308
suppress ¢ 363
suppressing formats ¢ 363, 364
supressing in source code * 46
switching to action diagram e 585
switching to device design ¢ 585

system ¢ 518
system context ¢ 519
system contexts ¢ 518, 519

I

tailoring for performance ¢ 631

template function ¢ 610, 613, 614, 615, 616, 619

text e 338

text lines » 316

time * 468, 477, 492, 493

time details » 492

time details built-in function ¢ 492
time increment ¢ 493

time increment built-in function ¢ 493
timestamp ¢ 524

toggling to device design * 581
top-down applications ¢ 38
transaction processing ¢ 633

trigger commands ¢ 228, 229, 231, 232, 233

Trigger References file ¢ 220
Trigger Router 220, 234
Trigger Server ¢ 220, 235

triggers 217, 218, 219, 220, 223, 224, 226, 228, 234

TS# field type ¢ 524

tuning performance ¢ 635
typical implmentation ¢ 219
typical processing flow ¢ 219

u

UIM e 56

UIM generation (YNPTHLP) e 48

UIM model values ¢ 56

understanding ¢ 432

update (CHGOBIJ) » 85

update suppression e 49

usage type ¢ 257

usages ¢ 83

use as default for functions option ¢ 253
user ¢ 328

User (USR) » 169

User (USR) function field » 169

user COBOL source ¢ 143

user function ¢ 76, 130, 135, 139

user functions ¢ 30

user interface ¢ 74

User Interface Manager (UIM) ¢ 56, 346

User Point, placing functions in a wrapper ¢ 640

Index 779

user points ¢ 94, 114, 440, 587, 588, 589, 591, 598,

638
user RPG source code » 141
user source ¢ 139, 141, 143
user-defined function ¢ 562
user-program (EXCUSRPGM) ¢ 138
using ® 616
using arrays e 284
using function fields 372
using trigger commands ¢ 228

vV

validation 36

validation (YDATGEN) e 45
validation for USR fields 169
values (VAL) » 548

values list » 548

values list (LST) » 548

vary ¢ 269

vary parameter ¢ 269
versions ¢ 609

vertical structure ¢ 632
viewing and editing ¢ 327
viewing format relations e 327
virtual fields » 264

virtual restrictor usage ¢ 267

W

when to send (YSNDMSG) ¢ 52

where used ¢ 622

windows ¢ 57, 253, 300, 301, 334

with Edit Function Parameter ¢ 271

with open commands TYPE(*PERM) ¢ 136
with remainder » 466

within report structure ¢ 368

work with date list function ¢ 458

work with trigger references 233

Work with Trigger References command ¢ 233
workstation implementation ¢ 248
wrappers ¢ 639

WRK e 536

Y

Y2CALL (Call a Program) ¢ 260
YABRNPT ¢ 42, 346

YACTCND ¢ 42

YACTFUN e 42

YACTSYM ¢ 42

YACTUPD « 43

YALCVNM e 43

YBNDDIR * 43
YCMPMDLOBJ (Compare Model Objects) ® 630
YCNFVAL « 43

YCPYMSG ¢ 43

YCRTENV ¢ 44

YCUAEXT » 44

YCUAEXT model value « 44
YCUAPMT o 44

YCUAPMT model value ¢ 44
YCUTOFF e 45
YCVTTRGDTA ¢ 229
YDATFMT e 45

YDATGEN e 45

YDBFGEN e 45

YDFTCTX e 45, 533
YDOCMDLFUN command ¢ 629
YENDTRGSVR e 232
YERRRTN e 46

YEXCENV e 46

YGENCMT e« 46

YGENCMT model value ¢ 46
YGENHLP ¢ 46

YGENRDB ¢ 47

YHLLGEN e 47

YHLLVNM e 47

YHLPCSR o 47

YLSHFLL » 47

YNLLUPD e 49, 250
YNPTHLP ¢ 48

YOBJPFX e 49

YPMTGEN e 49

YPMTMSF e 50

YPUTOVR ¢ 50
YRLDTRGREF ¢ 233
YRP4HS2 ¢ 51

YRP4HSP ¢ 50

YRP4SGN e 51

YSAAFMT e 51, 253, 254
YSAAFMT model value ¢ 51
YSFLEND e 52

YSHRSBR ¢ 52

YSNDMSG e 52
YSTRTTRGSVR ¢ 231
YUIMBID ¢ 56

YUIMFMT e 56

YUIMIDX ¢ 56

YWBDATR ¢ 57

780 Building Applications

YWBDCHR e 57

YWBDCLR ¢ 57
YWRKTRGREF e 233
YWSNGEN e 248, 253, 254

y4

zooming into ¢ 370

Index 781

	CA 2E Building Applications
	Contact CA Technologies
	Documentation Changes
	Contents
	1: An Introduction to Functions
	Organization
	Terms Used in This Module
	Acronyms
	Values
	Abbreviations

	Understanding Functions
	Function Types
	Standard Functions
	Database Functions
	Device Functions
	User Functions
	Built-In Functions

	Function Fields
	Message Functions

	Basic Properties of Functions
	Function Names
	Function Components
	Function Options
	Parameters
	Device Designs
	Action Diagrams
	Default Device Function Processing

	Functions and Access Paths
	Additional Processing
	Integrity Checking
	Domain Integrity Checking
	Referential Integrity Checking
	Field Validation
	Linking Functions

	Building Block Approach, an Overview
	Top-Down Application Building

	2: Setting Default Options for Your Functions
	Model Values Used in Building Functions
	YDDLDBA
	YLVLCHK
	YRFSACT
	YSQLCOL
	YSQLFMT
	YSQLVNM
	User Interface Manager (UIM)
	Window Borders

	Changing Model Values
	Function Level
	Model Level

	Changing a Function Name
	Function Key Defaults

	3: Defining Functions
	Navigational Techniques and Aids
	Display All Functions
	Getting to Shipped Files and Fields

	Database Functions
	Understanding Database Functions
	Internal Database Functions and PHY Access Paths
	*Relative record number Field
	Internal Database Functions

	Array Processing

	Device Functions
	Understanding Device Functions
	Defining Device Functions
	Device Functions’Standard Features
	Standard Features--User Interface
	Standard Features--Processing Techniques
	Device Function Program Modes
	Classification of Standard Functions by Type

	User Functions
	Understanding User Functions
	Defining Free-Form Functions
	Defining User-Coded Functions

	Messages
	Understanding Messages
	Basic Properties of Messages
	Defining Message Functions
	Specifying Message Functions Details
	Specifying Parameters for Messages
	Specifying Second-Level Message Text

	Function Fields
	Understanding Function Fields
	Basic Properties of Function Fields
	Design Considerations
	Defining Function Fields

	Function Types, Message Types, and Function Fields
	Database Function
	Null Update Suppression Logic

	CNT Function Field
	CRTOBJ Database Function
	DFNSCRFMT Device Function
	DFNRPTFMT Device Function
	DLTOBJ Database Function
	Array DLTOBJ

	DRV Function Field
	Example of a Derived Function Field
	Example of a Compound Condition with Derived Fields

	DSPFIL Device Function
	Effects of Parameters
	*Reload Subfile
	Post-Confirm Pass Function Option

	DSPRCD Device Function
	Design Considerations

	DSPRCD2 Device Function
	DSPRCD3 Device Function
	DSPTRN Device Function
	Post-Confirm Pass Function Option
	Automatic Line Numbering

	EDTFIL Device Function
	Effects of Parameters

	EDTRCD Device Function
	EDTRCD2 Device Function
	EDTRCD3 Device Function
	EDTTRN Device Function
	EXCEXTFUN User Function
	Using Batch Processing

	EXCINTFUN User Function
	Example

	EXCMSG Message Function
	Advantage of SBMJOB over Execute Message
	Specifying EXCMSG

	EXCUSRPGM User Function
	Example

	EXCUSRSRC User Function
	Overall User Source Considerations
	Substitution Variables
	RPG Source Considerations
	COBOL Source Considerations
	EXCUSRSRC Function Example

	MAX Function Field
	Examples

	Function Field
	Example

	MTRCD Device Function
	PRTFIL Device Function
	Default Processing
	Device Considerations
	Parameter Considerations

	PRTOBJ Device Function
	RTVMSG Message Function
	Specifying RTVMSG

	RTVOBJ Database Function
	Effects of Restrictor Parameters
	Effects of Positioner Parameters
	Effects of No Parameters

	SELRCD Device Function
	SNDCMPMSG Message Function
	Example

	SNDERRMSG Message Function
	SNDINFMSG Message Function
	SNDSTSMSG Message Function
	Example

	SUM Function Field
	USR Function Field
	Default Prototype Functions

	4: ILE Programming
	Choosing RPGIV as the Default Language
	ILE Features That Affect CA
	Program Creation
	Program Calling

	Generating RPGIV Source
	Control (H) Specifications

	Compiling RPGIV Source
	Option O
	Option T

	RPGIV User Source
	Model Value YRP4SGN
	RPGIV Generator Notes
	Service Program Design and Generation
	Service Program Overview
	Service Program Functions
	Edit Function Details Panel
	Adding Modules and Procedures

	The YBNDDIR Model Value
	Specifying *NONE
	Specifying a Value Other Than *NONE

	5: Web Service Creation
	Approach
	Installation Requirements
	Required IBM PTFs
	PCML in Module

	Architecture
	Web Services Limitations
	Sample Flow
	Commands
	YCRTWS (Create Web Service Instance)
	YUNSWS (Uninstall Web Service)

	Web Service Remote Deployment
	References

	6: IBM i Database Trigger Support
	Implementing Triggers
	Typical Trigger Implementation
	CA 2E Trigger Implementation
	CA 2E Trigger Limitations

	CA 2E Model Support
	Performing Administrative Tasks
	Creating Trigger Functions
	Editing Trigger Functions
	Editing Trigger Parameters
	Using Trigger Commands
	Convert Trigger Data (YCVTTRGDTA)
	Start Trigger Server (YSTRTTRGSVR)
	End Trigger Server (YENDTRGSVR)
	Work with Trigger References (YWRKTRGREF)
	Reload Trigger References (YRLDTRGREF)

	Model to Run-Time Conversion
	Run-Time Support
	Trigger Router
	Trigger Server
	Trigger Runtime Externalization

	7: Modifying Function Options
	Understanding Function Options
	Specifying Function Options
	Choosing Your Options

	Identifying Standard Function Options
	Database Changes
	Create
	Change
	Delete
	Display Features
	Confirm
	Initial Confirm Value
	Standard Header/Footer Selection
	If Action Bar, What Type?
	Subfile Select
	Subfile End Implementation
	Dynamic Program Mode
	Exit After Add
	Repeat Prompt
	Bypass Key Screen
	Post Confirm Pass
	Send All Messages Option
	Exit Control
	Reclaim Resources
	Closedown Program
	Copy Back Messages
	Commitment Control
	Using Commitment Control
	Exception Routine
	Generate Exception Routine
	Generation Options
	Generation Mode
	Generate Help
	Help Type for NPT
	Generate as a Subroutine
	Share Subroutine
	Screen Text Constants
	Execution Location
	Overrides if Submitted Job
	Environment
	Workstation Implementation
	Distributed File I/O Control
	Null Update Suppression

	Identifying Standard Header/Footer Function Options
	Standard Header/Footer Function Options
	132 Column Screen
	Enable Selection Prompt Text
	Allow Right to Left/Top to Bottom
	Function Options for Setting Header/Footer Defaults
	Use As Default for Functions
	Is This an Action Bar
	Is This a Window
	Design and Usage Considerations
	Examples
	Example 1
	Example 2
	Example 3

	8: Modifying Function Parameters
	Understanding Function Parameters
	Identifying the Basic Properties
	Name
	Usage Type
	Input Only
	Output Only
	Both (Input/Output)
	Neither

	Flag Error Status
	Identifying Default Parameters
	Identifying the Return Code

	Understanding the Role of the Parameter
	Map Parameter
	Restrictor Parameter
	Using Restrictor Parameters
	Single-Record Panel Design Without a Restrictor
	Single-Record Panel Design with a Restrictor
	Multiple-Record Panel Design without a Restrictor
	Multiple-Record Panel Design with a Restrictor
	Virtual Fields and Restrictors on Subfiles
	A1 to B1
	A1 to B2
	Example of Virtual Restrictor Usage

	Device Design with Restricted Virtual Fields
	Device Design Without Restricted Virtual Fields

	Positioner Parameter
	Vary Parameter
	Allowed Parameter Roles

	Defining Function Parameters
	Defining Parameters with the Edit Function Parameters Panel
	Non-unique Sequence Numbers
	Identifying Functions with a Non-unique Parameter Sequence
	Resolving Function with a Non-unique Parameter Sequence Number

	Invalid Duplicate Parameter fields
	Identifying Functions with Invalid Duplicate Parameter Fields
	Rectifying Functions with Invalid Duplicate Parameter Fields

	Defining the Parameter’s Usage and Role
	Parameter Usage Restrictions
	Parameter Usage Matrix

	Defining Parameters While in the Action Diagram
	Specifying Parameters for Messages
	Using Arrays as Parameters
	Multiple-Instance Restrictions

	9: Modifying Device Designs
	Understanding Device Designs
	Basic Properties of Device Designs
	Design Standard
	Presentation Convention for CA 2E Device Designs
	Default Device Design
	Device Design Formats
	Device Design Fields
	Header/Footer Associated with a Device Function
	Access Path to Which the Function Attaches

	Function Parameters

	Panel Design Elements
	Panel Body Fields
	General Rules for Panel Layout
	Panel Layout Subfiles
	Panel Layout Field Usage
	Default Layout of a Single-Record Panel Design
	Default Layout of a Multiple-Record Panel Design
	Default Layout of a Single-and Multiple-Record Panel Design

	National Language Design Considerations
	Device Design Conventions and Styles
	CUA Text
	Windows
	CUA Text Window
	Action Bar
	CUA Text Action Bar
	CUA Entry
	CUA

	System 38
	CUA Device Design Extensions
	Rightmost Text
	Panel Defaults for Rightmost Text

	Standard Headers/Footers
	Function Keys
	IGC Support Function Key
	Function Key Explanations
	Specifying Function Keys
	Subfile Selector Values
	Panel Design Explanatory Text
	Positioning of the Explanatory Text
	Function Key Explanatory Text
	Subfile Selector Value Explanatory Text
	Form of the Explanatory Text
	CUA Entry Format
	CUA Text Format
	Specifying Panel Design Explanatory Text

	Changing the Number of Function Key Text Lines
	Table of Panel Design Attributes

	Editing Device Designs
	Editing the Device Design Layout
	From the Edit Database Relations Panel
	From the Open Functions Panel
	From the Edit Function Details Panel
	From the Edit Model Object List Panel
	Changing Fields
	Hiding/Dropping Fields
	Setting the Subfile End Indicator
	Editing Device Design Function Keys
	Modifying Field Label Text
	Changing Display Length of Output-Only Entries
	Displaying Device Design Formats
	Editing Device Design Formats
	Viewing and Editing Format Relations
	1. Required Relations
	2. Optional Relations
	3. Dropped Relations
	4. User Relations
	5. No-Error Relations

	Adding Function Fields
	Modifying Function Fields
	Deleting Function Fields
	Adding Constants
	Deleting Constants
	Modifying Action Bars
	CUA Text Standard Action Bars
	File
	Function
	Selector
	Help
	Modifying Windows
	Modify the defaults to meet your requirements. Modifying Display Attributes and Condition Fields
	Editing Panel Design Prompt Text
	Function Key Text
	Subfile Selector Text
	Selector Role
	Add SFLFOLD/SFLDROP to a Subfile Function
	Example SFLFOLD/SFLDROP

	ENPTUI for NPT Implementations
	Creating Menu Bars
	Assigning Sequence Numbers for Actions
	Working with Choices
	Specifying a Drop-Down Selection Field
	Defaulting of Prompt Type
	Some Specifics of Drop-Down Lists
	Mnemonics
	National Language
	Assigning Cursor Progression
	Cursor Progression and Subfiles
	Setting an Entry Field Attribute
	Assigning Multi-Line Entry
	Using an Edit Mask
	Edit Mask - ZIP + 4 Example

	Editing Report Designs
	Standard Report Headers/Footers
	Understanding PRTFIL and PRTOBJ
	PRTFIL
	PRTOBJ
	Modifying Report Design Formats
	Automatic Choice of Report Formats
	Automatic Choice of Report Fields
	Defining Report Designs
	Suppressing Formats
	Hiding
	Dropping

	Modifying Spacing Between Formats
	Specifying Print on Overflow
	Changing Indentation
	Absolute
	Relative

	Modifying Indentation
	Defining the Overall Report Structure
	Modifying the Overall Report Structure
	Defining Print Objects Within Report Structure
	Using Line Selection Options
	Linking Print Functions
	Zooming into Embedded Print Objects
	Using Function Fields on Report Design
	Report Design Example
	Example 1: Simple Report Design
	Relations
	Access Path Entries
	Default Report Formats
	Report Design Fields by Format
	Function Fields
	Modified Report Layout

	Example 2: Extended Report Design
	County Report Segment
	County Default Report Design
	County Modified Report Design
	Distributor Report Segment
	Distributor Relations
	Distributor Access Path Entries
	Area Access Path Entries
	Distributor PRTOBJ Functions
	Distributor Modified Report Design
	Address Report Segment
	Address RTV Access Path Entries
	Address PRTOBJ Functions
	Address Modified Report Design
	Order Report Segment
	Order RSQ Access Path Entries
	Order PRTOBJ Functions
	Order Function Fields
	Order Modified Report Design
	Overall Device Structure
	Parameters to PRTOBJ Functions
	Function Fields
	Overall Report Design

	Device User Source
	When to Use Device User Source
	Understanding Device User Source
	Attachment Levels
	Special Field-Level Attachment
	Defining a Device User Source Function
	Attaching Device User Source to a Device Design
	Entry-Level Device User Source
	Explicitly Attaching Entry-Level Device User Source
	Attaching Device User Source to a Field
	Working with Inherited Entry-Level Attachments
	Overriding an Inherited Entry-Level Attachment
	Substitution Variables
	Merger Commands for Device User Source
	Command Syntax
	Alphabetical List of Merger Commands
	(asterisk) or #(pound sign) indicate that the entire line is a comment.
	No Operation
	FIND
	INSERT
	MARK
	OVERLAY
	Examples
	PAINT
	POSITION
	QUIT
	REPLACE
	SCAN
	SKIP
	Notes
	UPDATE
	Notes

	Device User Source Example
	Copying Functions That Contain Attached Device User Source
	Reference Field
	Documenting Functions
	Guidelines for Using Device User Source
	Attachment Levels Are Not Hierarchical

	Understanding Extents
	Visualizing Extents
	Examples of ‘Painting’ Functions
	Contents of Extents
	Device Extent
	Format Extent
	Entry Extent
	Screen Extent

	Device Source Extent Stamp (DSES)
	Examples of Device Source Extent Stamp

	10: Modifying Action Diagrams
	Understanding Action Diagrams
	The Edit Database Relations Panel
	The Open Functions Panel
	The Edit Function Details Panel
	The Display All Functions Panel
	Specifying an Action in an Action Diagram
	Adding an Action
	Specifying a Function as an Action

	Naming a Function as an Action
	Specifying Parameters for an Action Function
	Calling a Function with a Parameter Passed as Array

	User Points
	Understanding Constructs
	Sequential
	Conditional
	Iterative
	Capabilities of Constructs

	Understanding Built-In Functions
	Add
	Example

	Commit
	Example

	Compute
	Defining a Compute Expression
	Concatenation
	Convert Variable
	Example 1
	Example 2

	Date Details
	Example

	Selection Parameters for Date Built-In Functions
	Date Increment
	Example
	Divide
	Example
	Divide with Remainder
	Duration
	Elapsed Time
	Exit Program
	Example
	Modulo
	Move
	Move Array
	Move Array Parameters
	Move Array Examples
	Move Array Usage

	Considerations for Date and Time Field Types
	Valid Moves
	Invalid Moves
	Move All
	Example

	Multiply
	Example

	Quit
	Retrieve Condition
	New Topic

	Rollback
	Retrieve Field Information
	Set Cursor
	Substring
	Subtract
	Time Details
	Time Increment

	Calculation Assumptions and Examples for Date Built-In Functions
	Business and Everyday Calendars
	Business Calendar
	Everyday Calendar

	*DATE INCREMENT Rules and Examples
	*DURATION Rules and Examples

	Understanding Contexts
	Database Contexts
	DB1
	DB2
	ELM

	Move from a Field to a Structure
	Move from a Structure to a Field
	Device Contexts
	KEY
	DTL
	2ND
	3RD
	CTL
	RCD
	CUR
	NXT

	Literal Contexts
	CND
	CON

	System Contexts
	JOB
	PGM
	*Program Mode
	*Return Code
	*Reload Subfile
	*Record Data Changed
	*Record Selected
	*Scan Limit
	*Defer Confirm
	*Print Format
	*Continue Transaction
	*Next RDB
	*Cursor Field
	*Cursor Row and *Cursor Column
	*Re-Read Subfile Record

	Differences in Subfile Processing Between EDTTRN and DSPTRNs Compared to DSPFIL, EDTFIL, and SELRCDs
	*Synon Work field (15,0) to (17,9)
	*Initial Call
	*Sbmjob override string
	*Sbmjob job name, *Sbmjob job user, *Sbmjob job number

	Function Contexts
	PAR
	LCL
	Special Considerations

	NLL
	Benefits
	Generic RTVOBJ

	WRK
	ARR
	Multiple-instance Arrays and the ARR Context

	Enhanced Array Support
	Enhanced Array Support Terms
	Enhanced Array Support Restrictions
	Performance Considerations for Multiple-Instance Array Parameters
	Generated Source
	Enhanced Array Support Usage
	Edit Function Parameters Panel
	Edit Function Parameter Details Panel
	Edit Action Diagram Panel

	Understanding Conditions
	Condition Types
	Values (VAL) Conditions Type
	Values List (LST) Condition Type
	Compare (CMP) Condition Type
	Examples
	Range (RNG) Condition Type
	Example

	Compound Conditions
	Defining Compound Conditions

	Understanding Shared Subroutines
	Externalizing the Function Interface
	Using Shared Subroutines with EDTFIL, EDTTRN, EDTRCD

	Understanding the Action Diagram Editor
	Selecting Context
	Entering and Editing Field Conditions
	Adding Conditions
	Deleting Conditions

	Line Commands
	I (Insert)
	M or MM (Move) (A or B)
	C or CC (Copy) (A or B)
	D or DD (Delete)
	N (Narrative)
	PR (Protect)
	R (References)
	U (Usages)
	V (View Summary)
	S (Show)
	H (Hide)
	Z (Zoom)

	Adding an Action --IA Command
	Deleting Constructs--D Line Commands
	Moving a Construct--M and A Line Commands
	Function Keys

	Using NOTEPAD
	NOTEPAD Line Commands
	NI (NOTEPAD Insert)
	NA or NAA (NOTEPAD Append)
	NR or NRR (NOTEPAD Replace)
	User-Defined *Notepad Function

	*, ** (Activate/Deactivate)
	Protecting Action Diagram Blocks
	Protecting a Block

	Using Bookmarks
	Submitting Jobs Within an Action Diagram
	Inserting a SBMJOB in an Action Diagram
	Defining SBMJOB Parameter Overrides
	Source Generation Overrides
	Dynamic Overrides
	Special SBMJOB Considerations
	Advantage of SBMJOB Over Execute Message

	Viewing a Summary of a Selected Block
	Using Action Diagram Services
	Scanning for Specified Criteria or Errors
	Calling Functions Within an Action Diagram
	Calling an External Function
	Calling an Internal Function

	Additional Action Diagram Editor Facilities
	Editing the Parameters
	Toggling to Device Designs
	Full Screen Mode
	Toggling Display for Functions and Messages
	Starting Edits for Multiple Functions
	Starting an Edit for Another Function
	Copying from One Function’s Action Diagram to Another Using NOTEPAD
	Modifying Function Parameters
	Switching from Action Diagram Directly to Function Device Design

	Exiting Options
	Exiting a Single Function
	Exiting All Open Functions
	Exiting a Locked Function
	Interactive Generation or Batch Submission

	Understanding Action Diagram User Points
	Change Object (CHGOBJ)
	USER: Processing Before Data Read
	USER: Processing if Data Record Not Found
	USER: Processing After Data Read
	USER: Processing Before Data Update
	USER: Processing After Data Update

	Create Object (CRTOBJ)
	USER: Processing Before Data Read
	USER: Processing Before Data Update
	USER: Processing if Data Record Already Exists
	USER: Processing if Data Update Error
	USER: Processing after Data Update

	Delete Object (DLTOBJ)
	USER: Processing Before Data Update
	USER: Processing Before Data Read

	Display File (DSPFIL)
	USER: Initialize Program
	USER: Initialize Subfile Control
	USER: Initialize Subfile Record from DBF Record
	CALC: Subfile Control Function Fields
	USER: Process Subfile Control (Pre-Confirm)
	CALC: Subfile Record Function Fields
	USER: Process Subfile Record (Pre-Confirm)
	USER: Process Subfile Record (Post-Confirm)
	USER: Process Subfile Record (Post-Confirm Pass)
	USER: Process Command Keys
	USER: Exit Program Processing

	Display Record (DSPRCD)
	USER: Initialize Program
	USER: Load Detail Screen from DBF Record
	USER: Process Key Screen Request
	CALC: Detail Screen Function Fields
	USER: Validate Detail Screen
	USER: Perform Confirmed Action
	USER: Process Command Keys
	USER: Exit Program Processing

	Display Transaction (DSPTRN)
	USER: Initialize Program
	USER: Initialize Subfile Record
	USER: Validate Header Non-key Fields
	USER: Validate Header Non-key Relations
	USER: Validate Subfile Record Fields
	USER: Validate Subfile Record Relations
	CALC: Subfile Record Function Fields
	CALC: Header Function Fields
	USER: Validate Totals
	USER: Header Update Processing
	USER: Subfile Record Update Processing
	USER: Process Command Keys
	USER: Exit Program Processing

	Edit File (EDTFIL)
	USER: Initialize Program
	USER: Initialize Subfile Header
	USER: Initialize Subfile Record (New Record)
	USER: Initialize Subfile Record (Existing Record)
	CALC: Subfile Control Function Fields
	USER: Validate Subfile Control
	USER: Validate Subfile Record Fields
	CALC: Subfile Record Function Fields
	USER: Validate Subfile Record Relations
	USER: Create Object
	USER: Delete Object
	USER: Change Object
	USER: Extra Processing After DBF Update
	USER: Process Command Keys
	USER: Exit Program Processing

	Edit Record (EDTRCD)
	USER: Initialize Program
	USER: Initialize Detail Screen (New Record)
	USER: Initialize Detail Screen (Existing Record)
	USER: Process Key Screen Request
	USER: Delete Object
	USER: Validate Detail Screen Fields
	CALC: Detail Screen Function Fields
	USER: Validate Detail Screen Relations
	USER: Create Object
	USER: Change Object
	USER: Process Command Keys
	USER: Exit Program Processing

	Edit Transaction (EDTTRN)
	USER: Initialize Program
	USER: Initialize Screen for New Transaction
	USER: Initialize Screen for Old Transaction
	USER: Validate Header Key Fields
	USER: Validate Header Key Relations
	USER: Load Existing Header
	USER: Initialize Subfile Record (Old Record)
	USER: Initialize Subfile Record (New Record)
	USER: Validate Header Non-key Fields
	USER: Validate Header Non-key Relations
	USER: Validate Subfile Record Fields
	USER: Validate Subfile Record Relations
	CALC: Subfile Record Function Fields
	CALC: Header Function Fields
	USER: Validate Totals
	USER: Create Header DBF Record
	USER: Change Header DBF Record
	USER: Delete Header DBF Record
	USER: Create Detail DBF Record
	USER: Change Detail DBF Record
	USER: Delete Detail DBF Record
	USER: Process Detail Record
	USER: Process Command Keys
	USER: Exit Program Processing

	Print File (PRTFIL) – Print Object (PRTOBJ)
	USER: Initialize Program
	USER: Record Selection Processing
	USER: Process Top of Page
	USER: Null Report Processing
	USER: On Print of File nnn Key xxx Format
	USER: On Print of Detail Format
	USER: On Print of End of Report Format

	Prompt and Validate Record (PMTRCD)
	USER: Initialize Program
	USER: Load Screen
	USER: Process Command Keys
	USER: Validate Fields
	CALC: Screen Function Fields
	USER: Validate Relations
	USER: User Defined Action
	USER: Exit Program Processing

	Retrieve Object (RTVOBJ)
	USER: Initialize Routine
	USER: Processing if Data Record Not Found
	USER: Process Data Record
	USER: Exit Processing

	Select Record (SELRCD)
	USER: Initialize Program
	USER: Load Subfile Record from DBF Record
	USER: Process Subfile Control
	USER: Process Selected Line
	USER: Process Changed Subfile Record
	CALC: Screen Function Fields
	USER: Process Command Keys
	USER: Exit Program Processing

	Understanding Function Structure Charts

	11: Copying Functions
	Creating a New Function from One That Exists
	From the Edit Functions Panel
	From a Template Function
	From the Exit Panel

	Cross-Type Copying
	What Copying Preserves
	Output/Input Fields
	What to Revisit
	Device Design
	Action Diagram User Points

	Function Templates
	Understanding Function Templates
	Creating a Template Function
	Special Considerations for EDTTRN/DSPTRN Template Functions
	Using a Template Function to Create a New Function
	Copying Internally-Referenced Template Functions
	Creating and Naming Referenced Functions
	Assigning Access Paths for Referenced Functions
	Defaulting Parameters for Referenced Functions
	Device Designs

	12: Deleting Functions
	Deleting a Function

	13: Generating and Compiling
	Requesting Generation and Compilation
	The Display Services Menu
	The Edit Functions Panel
	The Exit Function Definition Panel
	The Edit Model Object List Panel

	Compile Preprocessor

	14: Documenting Functions
	Printing a Listing of Your Functions
	Including Narrative Text
	Comparing Two Functions

	15: Tailoring for Performance
	Building an Application
	Using Display File, not Menu Options

	Determining Program Size
	Optimizing Program Objects

	Fine Tuning
	Selecting the Function Type
	Specifying the Right Level of Relations Checking
	Action Diagram Editing

	Construct Resolution in Code
	Using Single Compound Conditions
	Selecting the Proper User Points

	16: Creating Wrappers to Reuse Business Logic
	Selecting Action Diagram Statements
	Selecting Function Name and Type
	Automatic Parameter Interface Generation
	Original Contexts
	The Newly Created Function
	The Newly Created Array
	The Parameter Definitions
	The Control Context
	The Record Context
	The WRK Context
	The New Action Diagram

	A: Function Structure Charts
	Change Object
	Create Object
	Delete Object
	Display File (Chart 1 of 5)
	Display File (Chart 2 of 5)
	Display File (Chart 3 of 5)
	Display File (Chart 4 of 5)
	Display File (Chart 5 of 5)
	Display Record (Chart 1 of 5)
	Display Record (Chart 2 of 5)
	Display Record (Chart 3 of 5)
	Display Record (Chart 4 of 5)
	Display Record (Chart 5 of 5)
	Display Record– 2 Panels (Chart 1 of 7)
	Display Record – 2 Panels (Chart 2 of 7)
	Display Record – 2 Panels (Chart 3 of 7)
	Display Record – 2 Panels (Chart 4 of 7)
	Display Record – 2 Panels (Chart 5 of 7)
	Display Record – 2 Panels (Chart 6 of 7)
	Display Record – 2 Panels (Chart 7 of 7)
	Display Record – 3 Panels (Chart 1 of 8)
	Display Record – 3 Panels (Chart 2 of 8)
	Display Record – 3 Panels (Chart 3 of 8)
	Display Record – 3 Panels (Chart 4 of 8)
	Display Record – 3 Panels (Chart 5 of 8)
	Display Record – 3 Panels (Chart 6 of 8)
	Display Record – 3 Panels (Chart 7 of 8)
	Display Record – 3 Panels (Chart 8 of 8)
	Display Transaction (Chart 1 of 6)
	Display Transaction (Chart 2 of 6)
	Display Transaction (Chart 3 of 6)
	Display Transaction (Chart 4 of 6)
	Display Transaction (Chart 5 of 6)
	Display Transaction (Chart 6 of 6)
	Edit File (Chart 1 of 7)
	Edit File (Chart 2 of 7)
	Edit File (Chart 3 of 7)
	Edit File (Chart 4 of 7)
	Edit File (Chart 5 of 7)
	Edit File (Chart 6 of 7)
	Edit File (Chart 7 of 7)
	Edit Record (Chart 1 of 5)
	Edit Record (Chart 2 of 5)
	Edit Record (Chart 3 of 5)
	Edit Record (Chart 4 of 5)
	Edit Record (Chart 5 of 5)
	Edit Record – 2 Panels (Chart 1 of 9)
	Edit Record – 2 Panels (Chart 2 of 9)
	Edit Record – 2 Panels (Chart 3 of 9)
	Edit Record – 2 Panels (Chart 4 of 9)
	Edit Record – 2 Panels (Chart 5 of 9)
	Edit Record – 2 Panels (Chart 6 of 9)
	Edit Record – 2 Panels (Chart 7 of 9)
	Edit Record – 2 Panels (Chart 8 of 9)
	Edit Record – 2 Panels (Chart 9 of 9)
	Edit Record – 3 Panels (Chart 1 of 10)
	Edit Record – 3 Panels (Chart 2 of 10)
	Edit Record – 3 Panels (Chart 3 of 10)
	Edit Record – 3 Panels (Chart 4 of 10)
	Edit Record – 3 Panels (Chart 5 of 10)
	Edit Record – 3 Panels (Chart 6 of 10)
	Edit Record – 3 Panels (Chart 7 of 10)
	Edit Record – 3 Panels (Chart 8 of 10)
	Edit Record – 3 Panels (Chart 9 of 10)
	Edit Record – 3 Panels (Chart 10 of 10)
	Edit Transaction (Chart 1 of 8)
	Edit Transaction (Chart 2 of 8)
	Edit Transaction (Chart 3 of 8)
	Edit Transaction (Chart 4 of 8)
	Edit Transaction (Chart 5 of 8)
	Edit Transaction (Chart 6 of 8)
	Edit Transaction (Chart 7 of 8)
	Edit Transaction (Chart 8 of 8)
	Prompt and Validate Record (Chart 1 of 2)
	Prompt and Validate Record (Chart 2 of 2)
	Print File (Chart 1 of 5)
	Print File (Chart 2 of 5)
	Print File (Chart 3 of 5)
	Print File (Chart 4 of 5)
	Print File (Chart 5 of 5)
	Print Object (Chart 1 of 5)
	Print Object (Chart 2 of 5)
	Print Object (Chart 3 of 5)
	Print Object (Chart 4 of 5)
	Print Object (Chart 5 of 5)
	Retrieve Object
	Select Record (Chart 1 of 4)
	Select Record (Chart 2 of 4)
	Select Record (Chart 3 of 4)
	Select Record (Chart 4 of 4)

	B: How to Create a Deployable Web Service Using a Multiple-instance Array
	Define the Files
	Define the Order Details Array
	Create an EXCEXTFUN to Retrieve the Order Header and Order Details
	Retrieve the Order Header
	RTV Order Detail (*Arrays)
	CRT Order Detail (*Arrays)
	Load Order Detail Array (Order detail)
	EEF RTV Order (Order detail)

	Set the EXCEXTFUN to a Module
	Generate and Compile the Module
	Create a Service Program
	Add the Module to the Service Program
	Generate and Compile the Service Program
	Create a Web Service Function
	Deploy the Web Service Instance
	*MOVE ARRAY (*ALL)

	Index

